Fungrim home page

Fungrim entry: 412334

F2n<Fn+12<F2n+1F_{2 n} < F_{n + 1}^{2} < F_{2 n + 1}
Assumptions:nZ2n \in \mathbb{Z}_{\ge 2}
F_{2 n} < F_{n + 1}^{2} < F_{2 n + 1}

n \in \mathbb{Z}_{\ge 2}
Fungrim symbol Notation Short description
FibonacciFnF_{n} Fibonacci number
Powab{a}^{b} Power
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
    Formula(Less(Fibonacci(Mul(2, n)), Pow(Fibonacci(Add(n, 1)), 2), Fibonacci(Add(Mul(2, n), 1)))),
    Assumptions(Element(n, ZZGreaterEqual(2))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC