Fungrim home page

Fungrim entry: 483547

π=n=1A000796 ⁣(n)101n\pi = \sum_{n=1}^{\infty} \text{A000796}\!\left(n\right) {10}^{1 - n}
  • Sequence A000796 in Sloane's On-Line Encyclopedia of Integer Sequences (OEIS)
\pi = \sum_{n=1}^{\infty} \text{A000796}\!\left(n\right) {10}^{1 - n}
Fungrim symbol Notation Short description
Piπ\pi The constant pi (3.14...)
Sumnf(n)\sum_{n} f(n) Sum
SloaneAA00000X ⁣(n)\text{A00000X}\!\left(n\right) Sequence X in Sloane's OEIS
Powab{a}^{b} Power
Infinity\infty Positive infinity
Source code for this entry:
    Formula(Equal(Pi, Sum(Mul(SloaneA("A000796", n), Pow(10, Sub(1, n))), For(n, 1, Infinity)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC