# Integer sequences

## Definitions

Symbol: SloaneA $\text{A00000X}\!\left(n\right)$ Sequence X in Sloane's OEIS
$\left(X \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z}\right) \;\implies\; \text{A00000X}\!\left(n\right) \in \mathbb{Z} \cup \left\{\operatorname{Undefined}\right\}$

## Core sequences

Main topic: Prime numbers
$p_{n} = \text{A000040}\!\left(n\right)$
Main topic: Partition function
$p(n) = \text{A000041}\!\left(n\right)$
Main topic: Fibonacci numbers
$F_{n} = \text{A000045}\!\left(n\right)$
Main topic: Bell numbers
$B_{n} = \text{A000110}\!\left(n\right)$
Main topic: Factorials and binomial coefficients
$n ! = \text{A000142}\!\left(n\right)$
Prime counting function - Main topic: Prime numbers
$\pi(n) = \text{A000720}\!\left(n\right)$
Main topic: Landau's function
$g(n) = \text{A000793}\!\left(n\right)$
Main topic: Pi
$\pi = \sum_{n=1}^{\infty} \text{A000796}\!\left(n\right) {10}^{1 - n}$
Main topic: Bernoulli numbers and polynomials
$B_{n} = \frac{\text{A027641}\!\left(n\right)}{\text{A027642}\!\left(n\right)}$

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC