Fungrim home page

Fungrim entry: 140815

0(θ4 ⁣(0,it)1)2dt=π3log(2)\int_{0}^{\infty} {\left(\theta_{4}\!\left(0 , i t\right) - 1\right)}^{2} \, dt = \frac{\pi}{3} - \log(2)
\int_{0}^{\infty} {\left(\theta_{4}\!\left(0 , i t\right) - 1\right)}^{2} \, dt = \frac{\pi}{3} - \log(2)
Fungrim symbol Notation Short description
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Powab{a}^{b} Power
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
ConstIii Imaginary unit
Infinity\infty Positive infinity
Piπ\pi The constant pi (3.14...)
Loglog(z)\log(z) Natural logarithm
Source code for this entry:
    Formula(Equal(Integral(Pow(Sub(JacobiTheta(4, 0, Mul(ConstI, t)), 1), 2), For(t, 0, Infinity)), Sub(Div(Pi, 3), Log(2)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC