# Fungrim entry: af2d4b

$\left|\sum_{k=N}^{U} f(k) - \left(\int_{N}^{U} f(t) \, dt + \frac{f(N) + f(U)}{2} + \sum_{k=1}^{M} \frac{B_{2 k}}{\left(2 k\right)!} \left({f}^{(2 k - 1)}(U) - {f}^{(2 k - 1)}(N)\right)\right)\right| \le \frac{4}{{\left(2 \pi\right)}^{2 M}} \int_{N}^{U} \left|{f}^{(2 M)}(t)\right| \, dt$
Assumptions:$N \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; U \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; N \le U \;\mathbin{\operatorname{and}}\; M \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; f(t) \text{ is holomorphic on } t \in \left[N, U\right]$
TeX:
\left|\sum_{k=N}^{U} f(k) - \left(\int_{N}^{U} f(t) \, dt + \frac{f(N) + f(U)}{2} + \sum_{k=1}^{M} \frac{B_{2 k}}{\left(2 k\right)!} \left({f}^{(2 k - 1)}(U) - {f}^{(2 k - 1)}(N)\right)\right)\right| \le \frac{4}{{\left(2 \pi\right)}^{2 M}} \int_{N}^{U} \left|{f}^{(2 M)}(t)\right| \, dt

N \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; U \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; N \le U \;\mathbin{\operatorname{and}}\; M \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; f(t) \text{ is holomorphic on } t \in \left[N, U\right]
Definitions:
Fungrim symbol Notation Short description
Abs$\left|z\right|$ Absolute value
Sum$\sum_{n} f(n)$ Sum
Integral$\int_{a}^{b} f(x) \, dx$ Integral
BernoulliB$B_{n}$ Bernoulli number
Factorial$n !$ Factorial
ComplexDerivative$\frac{d}{d z}\, f\!\left(z\right)$ Complex derivative
Pow${a}^{b}$ Power
Pi$\pi$ The constant pi (3.14...)
ZZ$\mathbb{Z}$ Integers
ZZGreaterEqual$\mathbb{Z}_{\ge n}$ Integers greater than or equal to n
IsHolomorphic$f(z) \text{ is holomorphic at } z = c$ Holomorphic predicate
ClosedInterval$\left[a, b\right]$ Closed interval
Source code for this entry:
Entry(ID("af2d4b"),
Formula(LessEqual(Abs(Sub(Sum(f(k), For(k, N, U)), Parentheses(Add(Integral(f(t), For(t, N, U)), Add(Div(Add(f(N), f(U)), 2), Sum(Mul(Div(BernoulliB(Mul(2, k)), Factorial(Mul(2, k))), Sub(ComplexDerivative(f(t), For(t, U, Sub(Mul(2, k), 1))), ComplexDerivative(f(t), For(t, N, Sub(Mul(2, k), 1))))), For(k, 1, M))))))), Mul(Div(4, Pow(Mul(2, Pi), Mul(2, M))), Integral(Abs(ComplexDerivative(f(t), For(t, t, Mul(2, M)))), For(t, N, U))))),
Variables(f, N, U, M),
Assumptions(And(Element(N, ZZ), Element(U, ZZ), LessEqual(N, U), Element(M, ZZGreaterEqual(1)), IsHolomorphic(f(t), ForElement(t, Subset(ClosedInterval(N, U)))))))

## Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC