Fungrim home page

Fungrim entry: 4e4e0f

Γ(z)=0tz1etdt\Gamma(z) = \int_{0}^{\infty} {t}^{z - 1} {e}^{-t} \, dt
Assumptions:zC  and  Re(z)>0z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0
\Gamma(z) = \int_{0}^{\infty} {t}^{z - 1} {e}^{-t} \, dt

z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(z) > 0
Fungrim symbol Notation Short description
GammaΓ(z)\Gamma(z) Gamma function
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Powab{a}^{b} Power
Expez{e}^{z} Exponential function
Infinity\infty Positive infinity
CCC\mathbb{C} Complex numbers
ReRe(z)\operatorname{Re}(z) Real part
Source code for this entry:
    Formula(Equal(Gamma(z), Integral(Mul(Pow(t, Sub(z, 1)), Exp(Neg(t))), For(t, 0, Infinity)))),
    Assumptions(And(Element(z, CC), Greater(Re(z), 0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC