Fungrim entry: 1faf7a

$R_J\!\left(x, x, x, w\right) = \begin{cases} \frac{3}{x - w} \left(R_C\!\left(x, w\right) - \frac{1}{\sqrt{x}}\right), & x \ne w\\{w}^{-3 / 2}, & x = w\\ \end{cases}$
Assumptions:$x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; w \in \mathbb{C}$
TeX:
R_J\!\left(x, x, x, w\right) = \begin{cases} \frac{3}{x - w} \left(R_C\!\left(x, w\right) - \frac{1}{\sqrt{x}}\right), & x \ne w\\{w}^{-3 / 2}, & x = w\\ \end{cases}

x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; w \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
CarlsonRJ$R_J\!\left(x, y, z, w\right)$ Carlson symmetric elliptic integral of the third kind
CarlsonRC$R_C\!\left(x, y\right)$ Degenerate Carlson symmetric elliptic integral of the first kind
Sqrt$\sqrt{z}$ Principal square root
Pow${a}^{b}$ Power
CC$\mathbb{C}$ Complex numbers
Source code for this entry:
Entry(ID("1faf7a"),
Formula(Equal(CarlsonRJ(x, x, x, w), Cases(Tuple(Mul(Div(3, Sub(x, w)), Sub(CarlsonRC(x, w), Div(1, Sqrt(x)))), NotEqual(x, w)), Tuple(Pow(w, Neg(Div(3, 2))), Equal(x, w))))),
Variables(x, w),
Assumptions(And(Element(x, CC), Element(w, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC