Fungrim home page

Fungrim entry: aa404c

sinc ⁣(i)=limxsinc ⁣(ix)=\operatorname{sinc}\!\left(i \infty\right) = \lim_{x \to \infty} \operatorname{sinc}\!\left(i x\right) = \infty
\operatorname{sinc}\!\left(i \infty\right) = \lim_{x \to \infty} \operatorname{sinc}\!\left(i x\right) = \infty
Fungrim symbol Notation Short description
Sincsinc(z)\operatorname{sinc}(z) Sinc function
ConstIii Imaginary unit
Infinity\infty Positive infinity
RealLimitlimxaf(x)\lim_{x \to a} f(x) Limiting value, real variable
Source code for this entry:
    Formula(Equal(Sinc(Mul(ConstI, Infinity)), RealLimit(Sinc(Mul(ConstI, x)), For(x, Infinity)), Infinity)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-08-27 09:56:25.682319 UTC