Fungrim home page

Fungrim entry: 55ee4a

λ(τ) is holomorphic on τH{i}\lambda(\tau) \text{ is holomorphic on } \tau \in \mathbb{H} \cup \left\{i \infty\right\}
\lambda(\tau) \text{ is holomorphic on } \tau \in \mathbb{H} \cup \left\{i \infty\right\}
Fungrim symbol Notation Short description
IsHolomorphicf(z) is holomorphic at z=cf(z) \text{ is holomorphic at } z = c Holomorphic predicate
ModularLambdaλ(τ)\lambda(\tau) Modular lambda function
HHH\mathbb{H} Upper complex half-plane
ConstIii Imaginary unit
Infinity\infty Positive infinity
Source code for this entry:
    Formula(IsHolomorphic(ModularLambda(tau), ForElement(tau, Union(HH, Set(Mul(ConstI, Infinity)))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC