Fungrim home page

Fungrim entry: e9c797

Π ⁣(n,1)={(1n)1,n1~,n=1\Pi\!\left(n, 1\right) = \begin{cases} {\left(1 - n\right)}^{-1} \infty, & n \ne 1\\{\tilde \infty}, & n = 1\\ \end{cases}
Assumptions:nCn \in \mathbb{C}
\Pi\!\left(n, 1\right) = \begin{cases} {\left(1 - n\right)}^{-1} \infty, & n \ne 1\\{\tilde \infty}, & n = 1\\ \end{cases}

n \in \mathbb{C}
Fungrim symbol Notation Short description
EllipticPiΠ ⁣(n,m)\Pi\!\left(n, m\right) Legendre complete elliptic integral of the third kind
Powab{a}^{b} Power
Infinity\infty Positive infinity
UnsignedInfinity~{\tilde \infty} Unsigned infinity
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(EllipticPi(n, 1), Cases(Tuple(Mul(Pow(Sub(1, n), -1), Infinity), NotEqual(n, 1)), Tuple(UnsignedInfinity, Equal(n, 1))))),
    Assumptions(Element(n, CC)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC