# Fungrim entry: 4d65e5

$\operatorname{Bi}'\!\left(z\right) = \operatorname{Bi}'\!\left(0\right) \,{}_0F_1\!\left(\frac{1}{3}, \frac{{z}^{3}}{9}\right) + \frac{{z}^{2}}{2} \operatorname{Bi}\!\left(0\right) \,{}_0F_1\!\left(\frac{5}{3}, \frac{{z}^{3}}{9}\right)$
Assumptions:$z \in \mathbb{C}$
TeX:
\operatorname{Bi}'\!\left(z\right) = \operatorname{Bi}'\!\left(0\right) \,{}_0F_1\!\left(\frac{1}{3}, \frac{{z}^{3}}{9}\right) + \frac{{z}^{2}}{2} \operatorname{Bi}\!\left(0\right) \,{}_0F_1\!\left(\frac{5}{3}, \frac{{z}^{3}}{9}\right)

z \in \mathbb{C}
Definitions:
Fungrim symbol Notation Short description
AiryBi$\operatorname{Bi}\!\left(z\right)$ Airy function of the second kind
Hypergeometric0F1$\,{}_0F_1\!\left(a, z\right)$ Confluent hypergeometric limit function
Pow${a}^{b}$ Power
CC$\mathbb{C}$ Complex numbers
Source code for this entry:
Entry(ID("4d65e5"),
Formula(Equal(AiryBi(z, 1), Add(Mul(AiryBi(0, 1), Hypergeometric0F1(Div(1, 3), Div(Pow(z, 3), 9))), Mul(Mul(Div(Pow(z, 2), 2), AiryBi(0)), Hypergeometric0F1(Div(5, 3), Div(Pow(z, 3), 9)))))),
Variables(z),
Assumptions(Element(z, CC)))

## Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC