Fungrim home page

Fungrim entry: c6234b

zeroszC ⁣(z,i)={(m+12)+(n+12)i:mZ  and  nZ}\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \wp\!\left(z, i\right) = \left\{ \left(m + \frac{1}{2}\right) + \left(n + \frac{1}{2}\right) i : m \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z} \right\}
\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \wp\!\left(z, i\right) = \left\{ \left(m + \frac{1}{2}\right) + \left(n + \frac{1}{2}\right) i : m \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; n \in \mathbb{Z} \right\}
Fungrim symbol Notation Short description
ZeroszerosxSf(x)\mathop{\operatorname{zeros}\,}\limits_{x \in S} f(x) Zeros (roots) of function
WeierstrassP ⁣(z,τ)\wp\!\left(z, \tau\right) Weierstrass elliptic function
ConstIii Imaginary unit
CCC\mathbb{C} Complex numbers
ZZZ\mathbb{Z} Integers
Source code for this entry:
    Formula(Equal(Zeros(WeierstrassP(z, ConstI), ForElement(z, CC)), Set(Add(Parentheses(Add(m, Div(1, 2))), Mul(Add(n, Div(1, 2)), ConstI)), For(Tuple(m, n)), And(Element(m, ZZ), Element(n, ZZ))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC