Fungrim home page

Fungrim entry: dfbddd

1πθ1 ⁣(z,τ)θ1 ⁣(z,τ)=cot ⁣(πz)+4n=1q2n1q2nsin ⁣(2πnz)   where q=eπiτ\frac{1}{\pi} \frac{\theta'_{1}\!\left(z , \tau\right)}{\theta_{1}\!\left(z , \tau\right)} = \cot\!\left(\pi z\right) + 4 \sum_{n=1}^{\infty} \frac{{q}^{2 n}}{1 - {q}^{2 n}} \sin\!\left(2 \pi n z\right)\; \text{ where } q = {e}^{\pi i \tau}
Assumptions:zC  and  τH  and  Im(z)<Im(τ)  and  sin ⁣(πz)0z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; \left|\operatorname{Im}(z)\right| < \left|\operatorname{Im}(\tau)\right| \;\mathbin{\operatorname{and}}\; \sin\!\left(\pi z\right) \ne 0
\frac{1}{\pi} \frac{\theta'_{1}\!\left(z , \tau\right)}{\theta_{1}\!\left(z , \tau\right)} = \cot\!\left(\pi z\right) + 4 \sum_{n=1}^{\infty} \frac{{q}^{2 n}}{1 - {q}^{2 n}} \sin\!\left(2 \pi n z\right)\; \text{ where } q = {e}^{\pi i \tau}

z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \tau \in \mathbb{H} \;\mathbin{\operatorname{and}}\; \left|\operatorname{Im}(z)\right| < \left|\operatorname{Im}(\tau)\right| \;\mathbin{\operatorname{and}}\; \sin\!\left(\pi z\right) \ne 0
Fungrim symbol Notation Short description
Piπ\pi The constant pi (3.14...)
JacobiThetaθj ⁣(z,τ)\theta_{j}\!\left(z , \tau\right) Jacobi theta function
Sumnf(n)\sum_{n} f(n) Sum
Powab{a}^{b} Power
Sinsin(z)\sin(z) Sine
Infinity\infty Positive infinity
Expez{e}^{z} Exponential function
ConstIii Imaginary unit
CCC\mathbb{C} Complex numbers
HHH\mathbb{H} Upper complex half-plane
Absz\left|z\right| Absolute value
ImIm(z)\operatorname{Im}(z) Imaginary part
Source code for this entry:
    Formula(Equal(Mul(Div(1, Pi), Div(JacobiTheta(1, z, tau, 1), JacobiTheta(1, z, tau))), Where(Add(Cot(Mul(Pi, z)), Mul(4, Sum(Mul(Div(Pow(q, Mul(2, n)), Sub(1, Pow(q, Mul(2, n)))), Sin(Mul(Mul(Mul(2, Pi), n), z))), For(n, 1, Infinity)))), Equal(q, Exp(Mul(Mul(Pi, ConstI), tau)))))),
    Variables(z, tau),
    Assumptions(And(Element(z, CC), Element(tau, HH), Less(Abs(Im(z)), Abs(Im(tau))), NotEqual(Sin(Mul(Pi, z)), 0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC