Fungrim home page

Fungrim entry: 14ecc4

B2n=(1)n+12(2n)!ζ ⁣(2n)(2π)2nB_{2 n} = {\left(-1\right)}^{n + 1} \frac{2 \left(2 n\right)! \zeta\!\left(2 n\right)}{{\left(2 \pi\right)}^{2 n}}
Assumptions:nZ1n \in \mathbb{Z}_{\ge 1}
B_{2 n} = {\left(-1\right)}^{n + 1} \frac{2 \left(2 n\right)! \zeta\!\left(2 n\right)}{{\left(2 \pi\right)}^{2 n}}

n \in \mathbb{Z}_{\ge 1}
Fungrim symbol Notation Short description
BernoulliBBnB_{n} Bernoulli number
Powab{a}^{b} Power
Factorialn!n ! Factorial
RiemannZetaζ ⁣(s)\zeta\!\left(s\right) Riemann zeta function
Piπ\pi The constant pi (3.14...)
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
    Formula(Equal(BernoulliB(Mul(2, n)), Mul(Pow(-1, Add(n, 1)), Div(Mul(Mul(2, Factorial(Mul(2, n))), RiemannZeta(Mul(2, n))), Pow(Mul(2, Pi), Mul(2, n)))))),
    Assumptions(Element(n, ZZGreaterEqual(1))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC