Fungrim home page

Fungrim entry: ad91ae

zerosτFE14 ⁣(τ)={i,e2πi/3}\mathop{\operatorname{zeros}\,}\limits_{\tau \in \mathcal{F}} E_{14}\!\left(\tau\right) = \left\{i, {e}^{2 \pi i / 3}\right\}
\mathop{\operatorname{zeros}\,}\limits_{\tau \in \mathcal{F}} E_{14}\!\left(\tau\right) = \left\{i, {e}^{2 \pi i / 3}\right\}
Fungrim symbol Notation Short description
ZeroszerosxSf(x)\mathop{\operatorname{zeros}\,}\limits_{x \in S} f(x) Zeros (roots) of function
EisensteinEEk ⁣(τ)E_{k}\!\left(\tau\right) Normalized Eisenstein series
ModularGroupFundamentalDomainF\mathcal{F} Fundamental domain for action of the modular group
ConstIii Imaginary unit
Expez{e}^{z} Exponential function
Piπ\pi The constant pi (3.14...)
Source code for this entry:
    Formula(Equal(Zeros(EisensteinE(14, tau), ForElement(tau, ModularGroupFundamentalDomain)), Set(ConstI, Exp(Div(Mul(Mul(2, Pi), ConstI), 3))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC