Fungrim home page

2.00000000000000000000000000000

From Ordner, a catalog of real numbers in Fungrim.

DecimalExpression [entries]Frequency
2.000000000000000000000000000002     [569278 848d97 a891da 1eeccf bcdfc6 4b040d 42d727 a0ba58 d5917b dabb47 6b8963 826257 abbe42 d81f05 9973ef 3fb309 af7d3d 7137a2 f617c0 3478af 69fe63 1b881e 34136c 644d75 23077c 420007 2499cd 7e449a bb2d01 0d9352 54f420 9f19c1 0650f8 37fb5f 6520e7 0d8639 937fa9 0ce854 2429b2 af31ae 4c166d 62b0c4 dc558b 22e0be 978576 b1d132 f7ce46 288207 3cac28 9be916 9b3fde ea56d1 f78fa0 cc6d21 3c87b9 5b87f3 103bfb 22dc6e 1c90fb 10165f d6703a 0e2bcb 2a8ec9 b506ad d496b8 4a30f1 ee56b9 caf10a cb5071 dfea7d f1a29b da1873 51b241 e3896e 2b2066 92cc17 36ef64 f0639c 82b410 69b32e c9ead2 1448e3 71a0ff 0cbe75 fd82ab 8027e8 2aaba8 45267a 089f85 024a84 b786ad 12ce84 d1ef91 ea3e3c 07a654 3f1547 26faf3 8c52de 1fc63b 700d94 108daa 22c4f6 40baa9 271b73 03aca0 9a2054 0ed5e2 d6d836 1b11be 229c97 fb7a63 7d559c a498dd 162ecf 5ff181 2392f5 7a7d1d 03ad5a cbfe21 20e530 61480c 1b2d8a 54daa9 931201 984d9c 0984ef 4a5b9a 1dc520 9e9922 fdf80d 4d65e5 192a3e e85723 871996 c6c108 57d31a 11687b 4d1f6b b1a5e4 570399 68b73d 155343 925fdf d43f30 3e84e3 fda595 89c9e4 338b5c 685892 fda084 eba27c ae791d a98234 59184e f14471 99ff4c 6d3591 38b4f3 9923b7 30b67b b4165c 807c7d d280c5 e2a734 f88596 541e2e 423b36 781eae 127f05 22b67a b6017f d2f183 a14442 4099d2 bbeb35 99dc4a 077394 2b021c 6cbce8 d1ec2d 03fbe8 e2878f 945fa5 9e30e7 506d0c d9a187 60541a ff190c e60fd4 a1108d 5eb446 9f3474 0abbe1 5ce30b 48a1c6 0ad263 fdc94c 01bbb6 4a200a 93a877 c54c85 1a907e 64081c 630eca 2ada0f 791c44 bc2f88 858c8f 9448f2 a07d28 47acde ad1eaf 390158 d5000a d8cac6 7f5468 5404ce cf5355 62f23c 9357b9 4246ae 8d0629 f07e9d 62f12c 8f0a91 348b26 59e5df b049dc 22a9cd 44d300 d418d3 34d1c6 73f5e7 98f642 7697af 591d64 66efb8 9b7d8c 2e4da0 8fbf69 4da2cd 3bf702 5cb675 f93bae 75e141 1e6344 7466a2 c5d844 02a8d7 0a5ef4 692e42 500c0a cc234c 8f71cb fa6ff7 a222ed 166402 0477b3 a17386 e1dd64 1eaaed 82c978 7c4457 6ed553 9b7f05 674afa 7609c8 a14cfc 005478 78f5bb 8c2862 dad27b a91f8d 74be8f 98688d 9d26d2 2dcf0c 6678af 3fe553 33aa62 ab563e 468def acdce8 d83109 b7a578 f42042 87e9ed dcc1e5 6fce07 1c770c 33ee4a 7cb17f cf6e35 5c054e 903962 b65d19 fad16f 1c25d3 3ff35f b83f63 bfaeb5 afabeb 4a4739 1d730a 8ef3d7 e30d7e f1dd8a b978f0 2f3ed3 190843 575b8f 722241 177de7 5df909 f35a37 be9790 38c2d5 8a316c d25d10 ae76a3 5a11eb 2a4b9d e722ca d29148 e0b322 d39c46 769f6e 5c9675 fe1b96 cc59e4 dc6806 3f5711 2a11ab f1bd89 7cc3d3 925e5b 1403b5 db4e29 741859 46f244 8547ab e6d333 ef4b53 00c331 52302f 645c98 3009a7 f8dfaf fae9d3 ac4d13 557b19 b5bd5d d0d91a e1797b fc3ef5 b07750 75cb8c a91200 7a168a 931d89 acf63c a34260 90a1e1 2ae142 54951a 77d2f8 ab1c77 98703d ce2272 a4e947 46c021 417619 80f7dc e2bc80 033c51 3e1435 75eacb 1e00d2 6ade92 081abd 735409 da7fb1 27b2c7 c0ad12 1d4638 08ad28 367ac2 a01b6e 69a1a9 75f9bf bf8f37 c6be24 fddfe6 2573ba da16db 5d6f74 ab5af3 c24323 77e519 235d0d cb493d 5e1d3b 1792a9 add3ea a68e0e f55f0a bf533f d7a4e5 71a264 84f403 d41a95 f50c74 7774a3 fd732d b760d1 ed5222 7f8a58 775637 a9f190 340936 3a1316 b3fc6d 33690e 2245df 26fd1b 25435b 5d41b1 e03b7c 8a9884 e08bb4 dc507f 4f0049 771801 b7cfb3 8d304b 4af6db 612b21 ada157 68cc2f cb93ea 58d91f a4f9c9 00cdb7 634687 1f9beb 3b43b0 23961e e13fe9 210213 75231e aadf90 412334 e83059 8b825c 7efe21 c5bdcc c92a6f d4b12e e50532 298bb1 4f5575 8d7b3d 921d61 0a3e5a 397051 b62aae 752619 c8d10e d4e418 1e142c 0fda1b df5f38 08d275 47e587 e50a56 24c179 398bb7 8a34d1 7b2c26 bac5fb b788a1 1a63af e3f8a4 52ea5f 583bf9 208da7 2ba423 dfbddd 2251c6 d51efc 27b2bb 3189b9 356d7a 0d92f6 9789ee f183d0 e85dee f64eef 3fe47b 0aa9ac 2d2dde fb4b1b fff8ff 81c491 27c319 8356db b16d00 4cf228 8bb972 4c462b 42eb01 a19141 f6d0c6 a75407 d77f0a 3e71f4 21f156 e3d274 0479f5 fc8d5d f79ff0 0373dc 997777 edad97 54d4e2 534335 f42652 71d5ee ff8254 2371b9 7ec4f0 f4554f 03ee0b 1f1fb4 6c3ba9 82288c 2a0316 90a864 214a91 ad8a9a ae6718 47d430 621a9b b95ffa cde93e 7dd050 1d62a7 5174ea b10ca7 595f46 e1f15b 36ae10 569d5c 9bda2f c7e2fb f55b36 95e508 b5049d 1d65c2 ace837 9a8d4d 0983d1 936694 4877f2 622772 02d9e4 99aa38 d3b45d 2a69ce 429093 6f8e14 7e1850 d37d0f 443759 31adf6 e69cf6 2398a1 0bf328 f303c9 668877 f88455 a9cdda 324483 b58070 89e79d 4d8b0f ff58cf dd5f43 3a84d6 04cd99 265d9c 5384f3 fc4fd1 a15c03 7cb651 073466 5a3c4a 4d2c10 36fff2 772c88 cb6c9c d2714b 014c4e c9bcf7 95988c 2a48bd 853a62 204acd 7212ea 4cd504 a35b3c d967af 6cf802 7527f1 1feda6 0c09cc 7ef291 e9a269 1dcf7e 7b3ac4 6395ee faeed9 3ee358 2246a7 f5d28c d8d820 c12a41 9ba78a c7b921 1c67c8 a1a3d4 65ccf2 d0cb24 9d5b81 b0e1cb 3bb7e4 98a765 30a054 292d70 67f2ef f0414a 4e4380 f4750b 561d75 7c50d1 030560 522b04 a71381 297b3c 21839d 627c9c 7ac286 eadca2 ae3110 66eb8b 85eebc 305a29 7c78ea f71675 7377c8 b3c440 1faf7a b14da0 473c36 e0ac95 290f36 9d7c61 b1d07b 4c6267 b8fdcd 7cda09 5aceb9 a0c85d a59981 ccb4d1 799b5e 47f6dd 7a56c2 a4eb86 08583a ad9caa 100d3c b81b45 e9465d 458a97 d1f5c5 ecb406 5161ab 6636f2 fa3b53 e36542 050ee1 465810 616bcb 150b3e 37e644 de9f42 7a85b7 dac0aa e15f43 b2583f 709905 4d0e14 9ce413 fc2582 08822c 042551 27b169 eda57d d36e97 d8791e 124339 ce9a39 ecd36f 0e209c faa118 3f6d40 7131cd 3544a0 19d7d9 856db2 77aed2 aed6bd 15b347 279e4f da58f7 b8ed8f 8b4be6 f697d5 8be46c e6ff64 c26bc9 c3d8c2 626026 e9232b 39ce44 4e914f 69ca86 963daf 5d550c f5d489 abaf91 a2b0f9 1a7e22 f33f09 a2af66 af2d4b 9d66de 739819 2853d4 b721b4 2e1cc7 ed3ff9 4a23c7 ed0756 044128 a4eecf 41f67b 4c1db8 6c71c0 e46697 af0dfc 33e034 f48f54 d6415e 7295b5 638fa6 c1ffd4 bf3e29 eac389 5a3ebf 49514d 8dff72 244127 ad6c1c 954066 ad04bd 097efc 35cb93 ea304c 21c2f7 42c7f1 8c96a5 433d8b cbcad9 b23575 303204 f8de2e fc267b e8ce0b fa30c7 a4e47f fe4967 b6b014 18f40c 5752b8 c60033 f516e3 a2e9dd 3db90c a020e9 fa7251 cb152f e6dc09 c18c95 ffcc0f 464961 c28288 e93f43 f6b4a2 0cc301 3c88a7 dbfd5b d9765b 83a535 53026a d0c9ff e464ec 4c882a 4704f9 485ab6 cecede 4c1988 a787eb 794106 be4926 72ccda 8ffe07 be2f32 29c095 99a9c6 d4b0b6 a4d6fc 83566f c6d6e2 1df686 72b5bd aac129 a9c825 5f9e54 35403b 223ce1 ad8df6 5dc1c0 10ca40 bd7d8e 2f97f5 b0a4e9 ec5a44 16612f a0a1ee 20d72c 9b868d e4287f 24a793 4f3e30 157c33 14ecc4 9395fc 7fbbe8 807f3f e2288d 001234 23ed69 b464d3 b2e9d0 026e44 d56eb6 3e82c3 84196a d829be 43fa0e 8f5d76 6582c4 d989cd 1848f1 4cfeac 633265 1cec67 2a47d7 6b13be 588889 23a5e0 6b9f81 685126 768c77 d99808 31eecc 3fb3ca ff93d0 9a0bc8 21d9a0 2a2a38 a5d65f eca10b faf448 255142 85e42e d8d286 d2f9fb bae475 0b829e 1165fc ec0054 382679 c743eb 488a30 07584a 1699a9 10f3b2 950e5a 6018a4 6c4567 a0d13f a93679 9206a3 f12e20 b7f13b 48910b f9ca94 a0dff6 ff5e82 4f3d2b 7783f9 476642 a5e52e e37535 69d0a3 adf83a 9376ec cf5caa 693cfe a255e1 6d8bf0 3c833f 0888b3 d45548 22fb4a 1596d2 f12569 3c56c7 9933df 37ffb7 351d87 055b0a 06319a 70ec9f 49df16 d5b7e8 b52b6f 18a4d1 6c3523 9ee8bc 6f3fec f551ca 7e0002 d3b39c 1232f7 bb88c8 944a14 32e162 8c4ab4 c4febd a839d5 278274 0f02a5 2ef763 4f9844 e47bfb f9f31d d56914 90bb4a f3b870 94a81f bbf003 de0968 2fabeb a92c1a 099301 214b1c b136bd 05c2dd e96684 e72e96 1cdd7b dd5681 c4d78a fcab61 80f43a 12765e 19d480 1a15f9 9bf0ad 4d7098 345c26 13c539 b2cd79 8472cc 220e8d 6a8889  ... 1000 of 1617 shown]
Neg(-2)     [d45548 89d93c 39b699 c4febd 8c9f96 210213 e47bfb e50a56 21851b 5c178f fa8e96 465810 bac5fb 545987 a75407 56acfe 47b181 d7a4e5 8bb3d8 0ce854 7902fc 13d2a1 80f43a 6419ac d98ccc 99dc4a 00d5df]
Sqrt(4)     [9d5b81]
Totient(4)     [6d37c9]
LandauG(2)     [177218]
Totient(6)     [6d37c9]
BarnesG(4)     [5cb675]
Totient(3)     [6d37c9]
Factorial(2)     [3009a7]
Fibonacci(3)     [b506ad]
BellNumber(2)     [4c6267]
PrimeNumber(1)     [a3035f]
PartitionsP(2)     [856db2]
Im(Mul(2, ConstI))     [bcdfc6 c18c95 229c97 87e9ed 8027e8 ed2bf6 0cc301 35c85f 1976e1 cf3c8e f0414a 69e5fb 36171f f1a29b 781eae 127f05 b58070 e2efbf 18f40c 32e162 271b73 192a3e 9ad254 48333c]
PrimeNumber(Pow(10, 0))     [1e142c]
Im(Add(1, Mul(2, ConstI)))     [b58070]
Re(Add(2, Mul(3, ConstI)))     [0e2bcb]
Abs(Add(1, Mul(Sqrt(3), ConstI)))     [0abbe1]
Abs(Mul(Sqrt(2), Add(1, ConstI)))     [69d0a3]
Abs(Mul(Sqrt(2), Sub(1, ConstI)))     [5174ea]
Abs(Sub(1, Mul(Sqrt(3), ConstI)))     [175b7a]
Abs(Add(-1, Mul(Sqrt(3), ConstI)))     [21b67f]
ModularLambda(Div(Add(1, ConstI), 2))     [078869]
Cardinality(Set(List(2), List(1, 1)))     [b2583f]
Integral(Mul(Mul(JacobiTheta(2, 0, Mul(ConstI, t)), JacobiTheta(3, 0, Mul(ConstI, t))), JacobiTheta(4, 0, Mul(ConstI, t))), For(t, 0, Infinity))     [727715]
1617 (#3)

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC