Fungrim home page

Fungrim entry: 345c26

ζ ⁣(2,1)=n=1Hn(n+1)2=ζ ⁣(3)\zeta\!\left(2, 1\right) = \sum_{n=1}^{\infty} \frac{H_{n}}{{\left(n + 1\right)}^{2}} = \zeta\!\left(3\right)
\zeta\!\left(2, 1\right) = \sum_{n=1}^{\infty} \frac{H_{n}}{{\left(n + 1\right)}^{2}} = \zeta\!\left(3\right)
Fungrim symbol Notation Short description
MultiZetaValueζ ⁣(s1,,sk)\zeta\!\left({s}_{1}, \ldots, {s}_{k}\right) Multiple zeta value (MZV)
Sumnf(n)\sum_{n} f(n) Sum
Powab{a}^{b} Power
Infinity\infty Positive infinity
RiemannZetaζ ⁣(s)\zeta\!\left(s\right) Riemann zeta function
Source code for this entry:
    Formula(Equal(MultiZetaValue(2, 1), Sum(Div(HarmonicNumber(n), Pow(Add(n, 1), 2)), For(n, 1, Infinity)), RiemannZeta(3))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC