Fungrim home page

Fungrim entry: f9ca94

RG ⁣(λx,λy,λz)=λ1/2RG ⁣(x,y,z)R_G\!\left(\lambda x, \lambda y, \lambda z\right) = {\lambda}^{1 / 2} R_G\!\left(x, y, z\right)
Assumptions:xC  and  yC  and  zC  and  λ(0,)x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \lambda \in \left(0, \infty\right)
R_G\!\left(\lambda x, \lambda y, \lambda z\right) = {\lambda}^{1 / 2} R_G\!\left(x, y, z\right)

x \in \mathbb{C} \;\mathbin{\operatorname{and}}\; y \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \lambda \in \left(0, \infty\right)
Fungrim symbol Notation Short description
CarlsonRGRG ⁣(x,y,z)R_G\!\left(x, y, z\right) Carlson symmetric elliptic integral of the second kind
Powab{a}^{b} Power
CCC\mathbb{C} Complex numbers
OpenInterval(a,b)\left(a, b\right) Open interval
Infinity\infty Positive infinity
Source code for this entry:
    Formula(Equal(CarlsonRG(Mul(lamda, x), Mul(lamda, y), Mul(lamda, z)), Mul(Pow(lamda, Div(1, 2)), CarlsonRG(x, y, z)))),
    Variables(x, y, z, lamda),
    Assumptions(And(Element(x, CC), Element(y, CC), Element(z, CC), Element(lamda, OpenInterval(0, Infinity)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC