Fungrim home page

Fungrim entry: 0888b3

γ=limx0+[π2Y0 ⁣(x)log ⁣(x2)]\gamma = \lim_{x \to {0}^{+}} \left[\frac{\pi}{2} Y_{0}\!\left(x\right) - \log\!\left(\frac{x}{2}\right)\right]
\gamma = \lim_{x \to {0}^{+}} \left[\frac{\pi}{2} Y_{0}\!\left(x\right) - \log\!\left(\frac{x}{2}\right)\right]
Fungrim symbol Notation Short description
ConstGammaγ\gamma The constant gamma (0.577...)
RightLimitlimxa+f(x)\lim_{x \to {a}^{+}} f(x) Limiting value, from the right
Piπ\pi The constant pi (3.14...)
BesselYYν ⁣(z)Y_{\nu}\!\left(z\right) Bessel function of the second kind
Loglog(z)\log(z) Natural logarithm
Source code for this entry:
    Formula(Equal(ConstGamma, RightLimit(Brackets(Sub(Mul(Div(Pi, 2), BesselY(0, x)), Log(Div(x, 2)))), For(x, 0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC