Fungrim home page

Fungrim entry: 488a30

π=4(22F1 ⁣(12,12,12,12)1)\pi = 4 \left(\sqrt{2} \,{}_2F_1\!\left(-\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) - 1\right)
\pi = 4 \left(\sqrt{2} \,{}_2F_1\!\left(-\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right) - 1\right)
Fungrim symbol Notation Short description
Piπ\pi The constant pi (3.14...)
Sqrtz\sqrt{z} Principal square root
Hypergeometric2F12F1 ⁣(a,b,c,z)\,{}_2F_1\!\left(a, b, c, z\right) Gauss hypergeometric function
Source code for this entry:
    Formula(Equal(Pi, Mul(4, Sub(Mul(Sqrt(2), Hypergeometric2F1(Neg(Div(1, 2)), Neg(Div(1, 2)), Div(1, 2), Div(1, 2))), 1)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC