# Fungrim entry: d3b39c

$R_J\!\left(x, y, z, w\right) \ge {\left(\frac{5}{\sqrt{x} + \sqrt{y} + \sqrt{z} + 2 \sqrt{w}}\right)}^{3}$
Assumptions:$x \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; z \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; w \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; \left(\left(x \ne 0 \;\mathbin{\operatorname{and}}\; y \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(x \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(y \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right)\right)$
TeX:
R_J\!\left(x, y, z, w\right) \ge {\left(\frac{5}{\sqrt{x} + \sqrt{y} + \sqrt{z} + 2 \sqrt{w}}\right)}^{3}

x \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; y \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; z \in \left[0, \infty\right) \;\mathbin{\operatorname{and}}\; w \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; \left(\left(x \ne 0 \;\mathbin{\operatorname{and}}\; y \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(x \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right) \;\mathbin{\operatorname{or}}\; \left(y \ne 0 \;\mathbin{\operatorname{and}}\; z \ne 0\right)\right)
Definitions:
Fungrim symbol Notation Short description
CarlsonRJ$R_J\!\left(x, y, z, w\right)$ Carlson symmetric elliptic integral of the third kind
Pow${a}^{b}$ Power
Sqrt$\sqrt{z}$ Principal square root
ClosedOpenInterval$\left[a, b\right)$ Closed-open interval
Infinity$\infty$ Positive infinity
OpenInterval$\left(a, b\right)$ Open interval
Source code for this entry:
Entry(ID("d3b39c"),
Assumptions(And(Element(x, ClosedOpenInterval(0, Infinity)), Element(y, ClosedOpenInterval(0, Infinity)), Element(z, ClosedOpenInterval(0, Infinity)), Element(w, OpenInterval(0, Infinity)), Or(And(NotEqual(x, 0), NotEqual(y, 0)), And(NotEqual(x, 0), NotEqual(z, 0)), And(NotEqual(y, 0), NotEqual(z, 0))))))