Fungrim home page

Fungrim entry: 9395fc

Pn ⁣(z)=2F1 ⁣(n,n+1,1,1z2)P_{n}\!\left(z\right) = \,{}_2F_1\!\left(-n, n + 1, 1, \frac{1 - z}{2}\right)
Assumptions:nZ0  and  zCn \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
P_{n}\!\left(z\right) = \,{}_2F_1\!\left(-n, n + 1, 1, \frac{1 - z}{2}\right)

n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C}
Fungrim symbol Notation Short description
LegendrePolynomialPn ⁣(z)P_{n}\!\left(z\right) Legendre polynomial
Hypergeometric2F12F1 ⁣(a,b,c,z)\,{}_2F_1\!\left(a, b, c, z\right) Gauss hypergeometric function
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(LegendrePolynomial(n, z), Hypergeometric2F1(Neg(n), Add(n, 1), 1, Div(Sub(1, z), 2)))),
    Variables(n, z),
    Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(z, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC