Fungrim home page

Fungrim entry: 622772

erfi(z)=2π0zet2dt\operatorname{erfi}(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} {e}^{{t}^{2}} \, dt
Assumptions:zCz \in \mathbb{C}
\operatorname{erfi}(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} {e}^{{t}^{2}} \, dt

z \in \mathbb{C}
Fungrim symbol Notation Short description
Erfierfi(z)\operatorname{erfi}(z) Imaginary error function
Sqrtz\sqrt{z} Principal square root
Piπ\pi The constant pi (3.14...)
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Expez{e}^{z} Exponential function
Powab{a}^{b} Power
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(Erfi(z), Mul(Div(2, Sqrt(Pi)), Integral(Exp(Pow(t, 2)), For(t, 0, z))))),
    Assumptions(Element(z, CC)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC