Fungrim home page

3.14159265358979323846264338328

From Ordner, a catalog of real numbers in Fungrim.

DecimalExpression [entries]Frequency
3.14159265358979323846264338328Pi     [848d97 77e519 bcdfc6 4b040d 83566f 235d0d 42d727 81f7db cb493d aac129 21851b 8c368f e4cdf1 add3ea a68e0e a0ba58 dbdf08 d5917b dabb47 f5fa23 8519dd 10ca40 84f403 912ff9 12b336 826257 d41a95 419b45 2f97f5 f50c74 cdb587 d81f05 b760d1 16612f 90ac58 ff587a eda0f3 073e1a 20d72c f617c0 7f8a58 dc7c83 775637 340936 1b881e 69fe63 3a1316 9c93bb 33690e ce66a9 2245df 26fd1b 25435b 23077c cbce7f 420007 24a793 cf70ce 62eade 8a9884 e03b7c 5278da 0d9352 4dec89 dc507f 303827 d31b04 0650f8 0d8639 b7cfb3 14ecc4 81f531 937fa9 092cee d88dd1 7fbbe8 4af6db af31ae 62b0c4 612b21 b5d706 e00d9e 001234 63ba30 23ed69 cb93ea 271314 9b3fde f78fa0 5a8f57 6d0a95 cc6d21 d637c5 5b87f3 2f6805 026e44 3e82c3 00cdb7 1f9beb 4d5410 3b43b0 a4f9c9 103bfb b63481 43fa0e db2b0a d6703a e28209 921ef0 2a8ec9 6582c4 d989cd 1848f1 1cec67 61c002 2a47d7 e83059 6b13be 7efe21 ee56b9 c5bdcc 298bb1 270e67 6b9f81 ec1435 3c1021 d38a03 8d7b3d 921d61 685126 da1873 060366 816057 cd5f45 a2a294 a8b41c 9bf21b 31eecc 3fb3ca e3896e 36ef64 fc8149 397051 82b410 338055 b62aae c9ead2 752619 9a0bc8 1fa8e7 0fda1b 21d9a0 2a2a38 a5d65f 1448e3 71a0ff 06633e e04867 255142 cd55cf 8027e8 2aaba8 d8cb3e 45267a 16d2e1 8a34d1 089f85 82926c 024a84 b788a1 d2f9fb bae475 1165fc c362e8 1a63af ec0054 7ae3ed b0049f afd27a 52ea5f 7348e3 488a30 208da7 2ba423 f3e75c dfbddd a6776b c743eb ea3e3c 2251c6 1699a9 d51efc 3f1547 26faf3 375afe 1fc63b 700d94 108daa 22c4f6 b510b6 f183d0 28237a f64eef 40baa9 3fe47b 2d2dde 03aca0 0ed5e2 6c4567 4c0698 27c319 9206a3 8bb972 be0f54 4c462b fb7a63 3b8c97 d16cb4 4d26ec 48910b 9f2b18 78131f bceed4 0fbd15 7a7d1d 7783f9 03ad5a 53fcdd f5887b c6c92a 713b6b 84ea08 1b2d8a e3d274 0479f5 97ba8d 0c847f fc8d5d 0455b3 ce39ac e37535 3d276b 69d0a3 f79ff0 0373dc 997777 3047b1 3ac0ce edad97 69c5ef 9376ec 4a5b9a 54d4e2 1dc520 cf5caa 534335 64c188 f42652 71d5ee a9ecff 5babc2 4064f5 1ee920 fb9942 2371b9 3c833f 7ec4f0 871996 0888b3 d45548 c6c108 ac8d3c 2b7b1d 1596d2 6c3ba9 22fb4a 2a0316 99c077 57d31a 11687b 3c56c7 37ffb7 f8d280 ae6718 b1a5e4 570399 1745f5 68b73d 06319a 621a9b b95ffa 44ad09 cde93e d5b7e8 7dd050 1d62a7 5174ea 18a4d1 8814ad 595f46 bb4501 9ee8bc 6f3fec f55b36 bd3faa fda595 f551ca a41c92 792c76 1c22f1 1232f7 bb88c8 7b62e4 99ad29 ace837 40a376 32e162 936694 622772 e4e707 eba27c 8332d8 2090c3 2a69ce 0f02a5 2ef763 429093 f9f31d 79f20e f3b870 6d3591 c1bee1 38b4f3 bbf003 2fabeb d5a29e a92c1a d0dfba 0644b6 4dabda 2398a1 807c7d 0bf328 2d3356 f88596 5679f2 e20db0 541e2e 781eae e09b77 e96684 127f05 713501 22b67a b6017f d2f183 c4d78a a14442 44e8fb ff58cf 4d8b0f 3a84d6 04cd99 1bae52 0c9939 a46f94 13c539 04c829 78fca3 056c0e 220e8d 6a8889 08b69d ad0d7a 8fab22 8472cc 7cb651 03fbe8 dae4a7 4d2c10 81f500 c2976e 9e30e7 c5a9cf 967bbb 506d0c 9ea739 60541a 8f4e31 7ea1ad 10cdf4 2d4828 951f86 204acd 9f3474 0abbe1 c4b16c a90f35 9a3503 45740a 0ad263 60ac50 2f6818 0c09cc 6e9544 db3eb9 fdc94c 42d832 594cc3 4a200a 93a877 8a857c 618a54 13d2a1 64081c 7b3ac4 21d9b8 487e35 ce3a8e 630eca ed6590 a0d93c bc2f88 3aed02 f5d28c 45a969 d8d820 c7f885 cbf396 f0f0a6 47acde 2f1f7b c7b921 bfc13f a1a3d4 67bb53 7c90eb b0e1cb 98a765 729c78 30a054 b8ab9c bad5d9 1fa6b7 f0414a 4e4380 8d0629 561d75 62f12c 7c50d1 393b62 c331da 030560 8f0a91 b1357b 522b04 348b26 a71381 d70b12 b049dc 22a9cd 9b8c9f 44d300 e2efbf 7ac286 d418d3 f2e28a c62afa 99a9c6 06223c af2ea9 ae3110 378949 c05ed8 54c80d 361801 305a29 0d8e03 593e63 a0ca3e 6a7704 639d7b 98f642 39b699 7697af 473c36 591d64 df88a0 157c6c 9b7d8c 2e4da0 51a946 171724 d9c818 06260c 3d25dd 290f36 67e015 3bf702 1d2f4a f93bae f56273 75e141 799894 4a1b00 fbc53d 7cda09 5f84d9 3bfced 2ff7e7 ed4ce5 a59981 ca9123 dea83d 799b5e 4cf4e4 906569 7a56c2 f89d5a 9bfd88 100d3c 0477b3 43cc72 60f858 590136 cc22bf 458a97 d1f5c5 e1dd64 ecb406 9aa62c b7d740 e3e4c5 5161ab adf5e2 1eaaed 6b2078 6430cc 465810 6ed553 54aaf1 0878a4 13cac5 37e644 3fe2b0 e2445d 005478 dac0aa e15f43 95f771 dec0d2 709905 dad27b a91f8d b89166 74be8f 175b7a 98688d e98dd0 2dcf0c 3fe553 4d0e14 f8cd8f a7095f af8328 45f05f 4d2168 babd3c ac236f 86d68c afb22a 042551 ebc673 d83109 b64782 eda57d 1e3a25 b7a578 d8791e b894a3 ed8ba7 b120b9 a39534 6505a9 f8a56f 361f61 483547 0e209c a54fb0 6fce07 33ee4a 7af1b9 7cb17f 63644d bb9eb6 3544a0 921f34 19d7d9 8107d6 77aed2 f5a15a 2991b5 ad6b74 3a5eb6 e1e106 5c054e 15b347 5e869b da58f7 fad16f 1c25d3 3ff35f b83f63 8b4be6 b2f31a 4dfd41 e7a9b1 73b76c c26bc9 c584c3 afabeb f96eac 7f4c85 c574fd 4a4739 4a3612 64a808 1d730a 0b8fd6 fdc3a3 d69b41 8ef3d7 e30d7e f1dd8a efebb8 39ce44 190843 e54e61 a5e568 575b8f ce5423 722241 f9190b 177de7 f35a37 03356b 2806fd 8ee7c9 21b67f 859856 07e35f 94db60 69ca86 08268d 11302a 8a316c 4257f4 f5d489 a044e1 b4a735 4c1e1e 1a7e22 f33f09 a2af66 7cddc6 5a11eb 3c4979 37a95a 121b21 af2d4b a0552b d29148 739819 e0b322 2853d4 7c00e6 769f6e 3b175b 8b7991 5c9675 4a23c7 3e05c6 ed0756 d3baaf 6d918c 1976db 64b65d b468f3 a4eecf 0c7de4 4c1db8 f2a0c7 6c71c0 08cda4 af0dfc ea26d4 89985a d15f11 f48f54 3b272e 3f5711 d6415e 6d9ceb 93831d 7295b5 7ce79e 7314c4 03e2a6 2a4195 925e5b 1403b5 e5bba3 bf3e29 6476bd e20938 eac389 20828c 49514d 5033c7 8dff72 b7fec0 f0f53b d35c54 987e3c 9cc0f2 ad04bd 155575 f1f42f 35cb93 140815 00c331 65647f a2e6f9 af4516 b1c84e abadc7 f8dfaf fae9d3 461a54 8c96a5 de9800 41631f b5bd5d e1797b 433d8b 304559 f8de2e 5c178f 1976e1 e8ce0b a91200 5d9c43 580ba0 57fcaf da0f15 ad91ae 1349b5 69e5fb a1414f 931d89 9b0385 27bc34 c7f7a5 acf63c 799742 490cf4 d38739 3102a7 cdee01 f4e249 7b91b4 d6a799 d04a5b 90a1e1 f826a6 2744d4 2ae142 c60033 48ac55 0c838a f516e3 5fc688 d1a0ec a020e9 cb152f ab1c77 98703d 8d6a1d 124d02 737805 c18c95 417619 80f7dc 545e8b c28288 464961 033c51 f6b4a2 0cc301 3c88a7 b347d3 5d2c01 a691b3 dbfd5b dbf388 5d8804 83a535 415ff0 53026a d0c9ff 735409 e464ec 27b2c7 c0ad12 1d4638 706783 cac83e 4704f9 5adbc3 15f92d a01b6e 522f54 69a1a9 d923de bf8f37 fddfe6 2573ba 495a98 06c468 da16db 5d6f74 0bd544 64bd32 81fb10 321538 868061 09a494 2516c2 4c1988 49d754 a787eb b5a25e 1842d9 72ccda b2fdfe ab5af3 d52bda 2c26a1 2a2f18 fa0292 f04e01 56667c 0c8084 e2161b]
Arg(-1)     [a8b41c]
Im(Log(-1))     [590136 2f1f7b]
Neg(Neg(Pi))     [a020e9 43cc72 60f858 1d730a 47acde 2ef763 d8791e f9f31d b7d740 81f7db 8f4e31 f48f54 33ee4a 2d3356 b7cfb3 75e141 e2445d 5e869b dec0d2 2ff7e7 4c1e1e 1232f7 a2af66 81fb10 987e3c 21d9b8 ce3a8e 06223c a0d93c 73b76c 0d8e03 04c829]
Mul(2, Acos(0))     [3ff35f]
Mul(4, Atan(1))     [0c9939]
Mul(2, Asin(1))     [722241]
CarlsonRG(0, 16, 16)     [c5a9cf]
Im(Mul(Pi, ConstI))     [2f1f7b 27c319 a1a3d4 7c90eb 4c462b a5e568 235d0d 21851b 4d26ec a0ba58 0c8084 03356b c331da 10ca40 8a316c 2f97f5 ff587a 1dc520 d29148 71d5ee dc7c83 6a7704 d45548 39b699 ed0756 6d918c 3c56c7 0c7de4 24a793 df88a0 2e4da0 06319a 290f36 cde93e 0650f8 f551ca ed4ce5 001234 271314 f1f42f cc6d21 35cb93 7a56c2 100d3c e4e707 00cdb7 103bfb 43fa0e 921ef0 9aa62c 429093 d989cd 1848f1 c1bee1 1cec67 6b2078 465810 e8ce0b d5a29e 54aaf1 d0dfba 580ba0 0878a4 c7f7a5 dac0aa da1873 e96684 cd5f45 22b67a 4d0e14 d6a799 44e8fb 4d8b0f 82b410 3a84d6 2ae142 1bae52 1fa8e7 ac236f 7cb651 2a2a38 d1a0ec 8d6a1d 06633e 737805 ed8ba7 8a34d1 f8a56f 024a84 204acd c4b16c 27b2c7 921f34 ec0054 77aed2 a90f35 7348e3 2ba423 5adbc3 f3e75c dfbddd c743eb 42d832 d923de b83f63 495a98 13d2a1 700d94 ed6590 1842d9 2d2dde f96eac f04e01 c574fd]
Im(Mul(ConstI, Pi))     [175b7a 0abbe1 e1dd64 f33f09 871996]
Mul(2, EllipticE(0))     [07e35f]
Mul(2, EllipticK(0))     [ce5423]
EisensteinG(2, ConstI)     [033c51 570399]
Pow(Gamma(Div(1, 2)), 2)     [8fab22]
Neg(Mul(ConstI, Log(-1)))     [590136]
Sqrt(Mul(6, PolyLog(2, 1)))     [9206a3]
Sqrt(Mul(6, RiemannZeta(2)))     [67bb53]
Neg(Im(Neg(Mul(Pi, ConstI))))     [3a84d6]
BetaFunction(Div(1, 2), Div(1, 2))     [591d64]
Mul(10, Asin(Div(1, Mul(2, GoldenRatio))))     [030560]
Sum(Sinc(n), For(n, Neg(Infinity), Infinity))     [4d5410]
Div(Log(Add(Pow(640320, 3), 744)), Sqrt(163))     [fdc3a3]
Mul(4, DirichletL(1, DirichletCharacter(4, 3)))     [f56273]
Integral(Sinc(x), For(x, Neg(Infinity), Infinity))     [9a3503]
Sum(Pow(Sinc(n), 2), For(n, Neg(Infinity), Infinity))     [1f9beb]
UniqueZero(Sin(x), ForElement(x, ClosedInterval(3, 4)))     [b89166]
Add(Mul(8, Atan(Div(1, 3))), Mul(4, Atan(Div(1, 7))))     [0644b6]
Sub(Mul(8, Atan(Div(1, 2))), Mul(4, Atan(Div(1, 7))))     [b1357b]
Add(Mul(4, Atan(Div(1, 2))), Mul(4, Atan(Div(1, 3))))     [cbf396]
Integral(Div(1, Sqrt(Sub(1, Pow(x, 2)))), For(x, -1, 1))     [fc8149]
Mul(2, Integral(Sqrt(Sub(1, Pow(x, 2))), For(x, -1, 1)))     [464961]
Sub(Mul(16, Atan(Div(1, 5))), Mul(4, Atan(Div(1, 239))))     [f8d280]
Integral(Pow(Sinc(x), 2), For(x, Neg(Infinity), Infinity))     [8107d6]
Sub(Mul(2, Hypergeometric2F1(1, 1, Div(1, 2), Div(1, 2))), 4)     [769f6e]
Mul(2, Hypergeometric2F1(Div(1, 2), Div(1, 2), Div(3, 2), 1))     [1448e3]
Mul(8, Pow(Integral(Sin(Pow(x, 2)), For(x, 0, Infinity)), 2))     [6ed553]
Mul(8, Pow(Integral(Cos(Pow(x, 2)), For(x, 0, Infinity)), 2))     [859856]
Sqrt(Sub(DigammaFunction(Div(1, 4), 1), Mul(8, ConstCatalan)))     [8ee7c9]
Mul(2, Product(Sec(Div(Pi, Pow(2, n))), For(n, 2, Infinity)))     [490cf4]
Integral(JacobiTheta(2, 0, Mul(ConstI, t)), For(t, 0, Infinity))     [d8cb3e]
Mul(Div(Sqrt(3), 2), Mul(Gamma(Div(1, 3)), Gamma(Div(2, 3))))     [2371b9]
Mul(Div(1, Sqrt(2)), Mul(Gamma(Div(1, 4)), Gamma(Div(3, 4))))     [63ba30]
Mul(4, Sub(Hypergeometric2F1(Neg(Div(1, 2)), 1, Div(1, 2), -1), 1))     [f55b36]
Integral(Div(1, Add(Pow(x, 2), 1)), For(x, Neg(Infinity), Infinity))     [04cd99]
Mul(4, Sum(Div(Pow(-1, n), Add(Mul(2, n), 1)), For(n, 0, Infinity)))     [f617c0]
Pow(Integral(Exp(Neg(Pow(x, 2))), For(x, Neg(Infinity), Infinity)), 2)     [dae4a7]
Sum(Mul(SloaneA("A000796", n), Pow(10, Sub(1, n))), For(n, 1, Infinity))     [483547]
Mul(2, Hypergeometric2F1(Neg(Div(1, 2)), Neg(Div(1, 2)), Div(1, 2), 1))     [2a0316]
Mul(2, Sum(Atan(Div(1, Add(Add(Pow(n, 2), n), 1))), For(n, 0, Infinity)))     [8dff72]
Mul(Div(9, Mul(2, Sqrt(3))), Hypergeometric2F1(1, 1, Div(3, 2), Div(1, 4)))     [2806fd]
Mul(2, Sum(Atan(Div(1, Fibonacci(Add(Mul(2, n), 1)))), For(n, 0, Infinity)))     [31eecc]
Sum(Div(Factorial(n), DoubleFactorial(Add(Mul(2, n), 1))), For(n, 0, Infinity))     [419b45]
Mul(Mul(2, ConstE), Integral(Div(Cos(x), Add(Pow(x, 2), 1)), For(x, 0, Infinity)))     [5033c7]
Mul(Sqrt(3), Sub(Mul(Div(9, 2), Hypergeometric2F1(1, 1, Div(1, 2), Div(1, 4))), 6))     [826257]
Mul(8, Sum(Div(1, Mul(Add(Mul(4, n), 1), Add(Mul(4, n), 3))), For(n, 0, Infinity)))     [338055]
Add(Add(Mul(4, Atan(Div(1, 2))), Mul(4, Atan(Div(1, 5)))), Mul(4, Atan(Div(1, 8))))     [5278da]
Mul(2, Product(Div(Mul(4, Pow(n, 2)), Sub(Mul(4, Pow(n, 2)), 1)), For(n, 1, Infinity)))     [69fe63]
SequenceLimit(Div(Pow(16, n), Mul(n, Pow(Binomial(Mul(2, n), n), 2))), For(n, Infinity))     [e1e106]
Sum(Div(Mul(Sub(Pow(3, n), 1), RiemannZeta(Add(n, 1))), Pow(4, n)), For(n, 1, Infinity))     [a2e6f9]
Mul(Mul(Div(1, 2), Pow(Gamma(Div(1, 4)), Div(4, 3))), Pow(AGM(1, Sqrt(2)), Div(2, 3)))     [dabb47]
Mul(3, Integral(Parentheses(Sub(JacobiTheta(3, 0, Mul(ConstI, t)), 1)), For(t, 0, Infinity)))     [e00d9e]
Mul(Sqrt(3), Sub(Mul(Div(9, 2), Sum(Div(1, Binomial(Mul(2, n), n)), For(n, 0, Infinity))), 6))     [f78fa0]
Mul(Sqrt(3), Sub(Mul(Div(9, 2), Sum(Div(n, Binomial(Mul(2, n), n)), For(n, 1, Infinity))), 3))     [dbdf08]
Mul(Sqrt(3), Sub(Mul(3, Sum(Div(Pow(-1, n), Add(Mul(3, n), 1)), For(n, 0, Infinity))), Log(2)))     [bad5d9]
Sum(Div(Mul(Pow(2, n), Pow(Factorial(n), 2)), Factorial(Add(Mul(2, n), 1))), For(n, 0, Infinity))     [93831d]
Sub(Div(22, 7), Integral(Div(Mul(Pow(x, 4), Pow(Sub(1, x), 4)), Add(1, Pow(x, 2))), For(x, 0, 1)))     [81f500]
Mul(4, Sub(Mul(Sqrt(2), Hypergeometric2F1(Neg(Div(1, 2)), Neg(Div(1, 2)), Div(1, 2), Div(1, 2))), 1))     [488a30]
Sub(Mul(12, Hypergeometric2F1(Neg(Div(1, 2)), Neg(Div(1, 2)), Div(1, 2), Div(1, 4))), Mul(6, Sqrt(3)))     [3d276b]
SequenceLimit(Mul(Div(4, Pow(n, 2)), Sum(Sqrt(Sub(Pow(n, 2), Pow(k, 2))), For(k, 0, n))), For(n, Infinity))     [dea83d]
Add(Add(Add(Mul(4, Atan(Div(1, 3))), Mul(4, Atan(Div(1, 4)))), Mul(4, Atan(Div(1, 7)))), Mul(4, Atan(Div(1, 13))))     [7ce79e]
Sub(Mul(Mul(4, Sqrt(2)), Sum(Div(Pow(-1, n), Add(Mul(4, n), 1)), For(n, 0, Infinity))), Mul(2, Log(Add(1, Sqrt(2)))))     [54c80d]
Add(Sub(Add(Mul(48, Atan(Div(1, 49))), Mul(128, Atan(Div(1, 57)))), Mul(20, Atan(Div(1, 239)))), Mul(48, Atan(Div(1, 110443))))     [8332d8]
Mul(Div(Mul(5, Sqrt(Add(GoldenRatio, 2))), Mul(2, GoldenRatio)), Hypergeometric2F1(1, 1, Div(3, 2), Div(1, Pow(Mul(2, GoldenRatio), 2))))     [42d727]
Sub(Div(355, 113), Mul(Div(1, 3164), Integral(Div(Mul(Mul(Pow(x, 8), Pow(Sub(1, x), 8)), Add(25, Mul(816, Pow(x, 2)))), Add(1, Pow(x, 2))), For(x, 0, 1))))     [bd3faa]
SequenceLimit(Mul(Div(1, 2), Pow(Mul(Pow(-1, Add(n, 1)), Div(Factorial(Mul(2, n)), BernoulliB(Mul(2, n)))), Div(1, Parentheses(Mul(2, n))))), For(n, Infinity))     [420007]
Sum(Mul(Div(1, Pow(16, n)), Sub(Sub(Sub(Div(4, Add(Mul(8, n), 1)), Div(2, Add(Mul(8, n), 4))), Div(1, Add(Mul(8, n), 5))), Div(1, Add(Mul(8, n), 6)))), For(n, 0, Infinity))     [fddfe6]
Add(Sub(Mul(72, Sum(Div(1, Mul(n, Sub(Exp(Mul(Pi, n)), 1))), For(n, 1, Infinity))), Mul(96, Sum(Div(1, Mul(n, Sub(Exp(Mul(Mul(2, Pi), n)), 1))), For(n, 1, Infinity)))), Mul(24, Sum(Div(1, Mul(n, Sub(Exp(Mul(Mul(4, Pi), n)), 1))), For(n, 1, Infinity))))     [0479f5]
Decimal("3.1415926535897932384626433832795028841971693993751")     [6505a9 47acde]
854 (#4)

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC