Fungrim home page

Fungrim entry: 1349b5

zeroszCsinc ⁣(πz)={n:nZandn0}\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \operatorname{sinc}\!\left(\pi z\right) = \left\{ n : n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, n \ne 0 \right\}
\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \operatorname{sinc}\!\left(\pi z\right) = \left\{ n : n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, n \ne 0 \right\}
Fungrim symbol Notation Short description
ZeroszerosxSf(x)\mathop{\operatorname{zeros}\,}\limits_{x \in S} f(x) Zeros (roots) of function
Sincsinc(z)\operatorname{sinc}(z) Sinc function
Piπ\pi The constant pi (3.14...)
CCC\mathbb{C} Complex numbers
ZZZ\mathbb{Z} Integers
Source code for this entry:
    Formula(Equal(Zeros(Sinc(Mul(Pi, z)), ForElement(z, CC)), Set(n, ForElement(n, ZZ), NotEqual(n, 0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC