Fungrim home page

Fungrim entry: 2f6818

zeroszC[sin(z)]={πn:nZ}\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \left[\sin(z)\right] = \left\{ \pi n : n \in \mathbb{Z} \right\}
\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \left[\sin(z)\right] = \left\{ \pi n : n \in \mathbb{Z} \right\}
Fungrim symbol Notation Short description
ZeroszerosxSf(x)\mathop{\operatorname{zeros}\,}\limits_{x \in S} f(x) Zeros (roots) of function
Sinsin(z)\sin(z) Sine
CCC\mathbb{C} Complex numbers
Piπ\pi The constant pi (3.14...)
ZZZ\mathbb{Z} Integers
Source code for this entry:
    Formula(Equal(Zeros(Brackets(Sin(z)), ForElement(z, CC)), Set(Mul(Pi, n), ForElement(n, ZZ)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC