# Fungrim entry: a2a294

$J_{3 / 2}\!\left(z\right) = {\left(\frac{2 z}{\pi}\right)}^{1 / 2} \left(\frac{\sin(z)}{{z}^{2}} - \frac{\cos(z)}{z}\right)$
Assumptions:$z \in \mathbb{C} \setminus \left\{0\right\}$
TeX:
J_{3 / 2}\!\left(z\right) = {\left(\frac{2 z}{\pi}\right)}^{1 / 2} \left(\frac{\sin(z)}{{z}^{2}} - \frac{\cos(z)}{z}\right)

z \in \mathbb{C} \setminus \left\{0\right\}
Definitions:
Fungrim symbol Notation Short description
BesselJ$J_{\nu}\!\left(z\right)$ Bessel function of the first kind
Pow${a}^{b}$ Power
Pi$\pi$ The constant pi (3.14...)
Sin$\sin(z)$ Sine
Cos$\cos(z)$ Cosine
CC$\mathbb{C}$ Complex numbers
Source code for this entry:
Entry(ID("a2a294"),
Formula(Equal(BesselJ(Div(3, 2), z), Mul(Pow(Div(Mul(2, z), Pi), Div(1, 2)), Sub(Div(Sin(z), Pow(z, 2)), Div(Cos(z), z))))),
Variables(z),
Assumptions(Element(z, SetMinus(CC, Set(0)))))

## Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC