Fungrim home page

Fungrim entry: 93831d

π=n=02n+1(n!)2(2n+1)!\pi = \sum_{n=0}^{\infty} \frac{{2}^{n + 1} {\left(n !\right)}^{2}}{\left(2 n + 1\right)!}
\pi = \sum_{n=0}^{\infty} \frac{{2}^{n + 1} {\left(n !\right)}^{2}}{\left(2 n + 1\right)!}
Fungrim symbol Notation Short description
Piπ\pi The constant pi (3.14...)
Sumnf(n)\sum_{n} f(n) Sum
Powab{a}^{b} Power
Factorialn!n ! Factorial
Infinity\infty Positive infinity
Source code for this entry:
    Formula(Equal(Pi, Sum(Div(Mul(Pow(2, Add(n, 1)), Pow(Factorial(n), 2)), Factorial(Add(Mul(2, n), 1))), For(n, 0, Infinity)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC