Fungrim home page

Fungrim entry: 2ff7e7

E ⁣(ϕ,m)=0ϕ1msin2 ⁣(x)dxE\!\left(\phi, m\right) = \int_{0}^{\phi} \sqrt{1 - m \sin^{2}\!\left(x\right)} \, dx
Assumptions:ϕ[π2,π2]  and  mC\phi \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \;\mathbin{\operatorname{and}}\; m \in \mathbb{C}
E\!\left(\phi, m\right) = \int_{0}^{\phi} \sqrt{1 - m \sin^{2}\!\left(x\right)} \, dx

\phi \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \;\mathbin{\operatorname{and}}\; m \in \mathbb{C}
Fungrim symbol Notation Short description
IncompleteEllipticEE ⁣(ϕ,m)E\!\left(\phi, m\right) Legendre incomplete elliptic integral of the second kind
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Sqrtz\sqrt{z} Principal square root
Powab{a}^{b} Power
Sinsin(z)\sin(z) Sine
ClosedInterval[a,b]\left[a, b\right] Closed interval
Piπ\pi The constant pi (3.14...)
CCC\mathbb{C} Complex numbers
Source code for this entry:
    Formula(Equal(IncompleteEllipticE(phi, m), Integral(Sqrt(Sub(1, Mul(m, Pow(Sin(x), 2)))), For(x, 0, phi)))),
    Variables(phi, m),
    Assumptions(And(Element(phi, ClosedInterval(Div(Neg(Pi), 2), Div(Pi, 2))), Element(m, CC))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC