Fungrim home page

Fungrim entry: af4516

zeroszCsinc(z)={πn:nZandn0}\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \operatorname{sinc}(z) = \left\{ \pi n : n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, n \ne 0 \right\}
TeX:
\mathop{\operatorname{zeros}\,}\limits_{z \in \mathbb{C}} \operatorname{sinc}(z) = \left\{ \pi n : n \in \mathbb{Z} \,\mathbin{\operatorname{and}}\, n \ne 0 \right\}
Definitions:
Fungrim symbol Notation Short description
ZeroszerosxSf(x)\mathop{\operatorname{zeros}\,}\limits_{x \in S} f(x) Zeros (roots) of function
Sincsinc(z)\operatorname{sinc}(z) Sinc function
CCC\mathbb{C} Complex numbers
Piπ\pi The constant pi (3.14...)
ZZZ\mathbb{Z} Integers
Source code for this entry:
Entry(ID("af4516"),
    Formula(Equal(Zeros(Sinc(z), ForElement(z, CC)), Set(Mul(Pi, n), ForElement(n, ZZ), NotEqual(n, 0)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2020-08-27 09:56:25.682319 UTC