Fungrim home page

Fungrim entry: 73b76c

ab=ab\sqrt{a b} = \sqrt{a} \sqrt{b}
Assumptions:(aC  and  b[0,))  or  (bC  and  a[0,))\left(a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \left[0, \infty\right)\right) \;\mathbin{\operatorname{or}}\; \left(b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; a \in \left[0, \infty\right)\right)
Alternative assumptions:aC  and  bC  and  arg(a)+arg(b)(π,π]a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \arg(a) + \arg(b) \in \left(-\pi, \pi\right]
\sqrt{a b} = \sqrt{a} \sqrt{b}

\left(a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \left[0, \infty\right)\right) \;\mathbin{\operatorname{or}}\; \left(b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; a \in \left[0, \infty\right)\right)

a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \arg(a) + \arg(b) \in \left(-\pi, \pi\right]
Fungrim symbol Notation Short description
Sqrtz\sqrt{z} Principal square root
CCC\mathbb{C} Complex numbers
ClosedOpenInterval[a,b)\left[a, b\right) Closed-open interval
Infinity\infty Positive infinity
Argarg(z)\arg(z) Complex argument
OpenClosedInterval(a,b]\left(a, b\right] Open-closed interval
Piπ\pi The constant pi (3.14...)
Source code for this entry:
    Formula(Equal(Sqrt(Mul(a, b)), Mul(Sqrt(a), Sqrt(b)))),
    Variables(a, b),
    Assumptions(Or(And(Element(a, CC), Element(b, ClosedOpenInterval(0, Infinity))), And(Element(b, CC), Element(a, ClosedOpenInterval(0, Infinity)))), And(Element(a, CC), Element(b, CC), Element(Add(Arg(a), Arg(b)), OpenClosedInterval(Neg(Pi), Pi)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC