Fungrim home page

Fungrim entry: d69b41

a=1qχ(a)zeazeqz1=n=0Bn,χznn!\sum_{a=1}^{q} \chi(a) \frac{z {e}^{a z}}{{e}^{q z} - 1} = \sum_{n=0}^{\infty} B_{n,\chi} \frac{{z}^{n}}{n !}
Assumptions:qZ1  and  χGq  and  zC  and  z0  and  z<2πqq \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \ne 0 \;\mathbin{\operatorname{and}}\; \left|z\right| < \frac{2 \pi}{q}
\sum_{a=1}^{q} \chi(a) \frac{z {e}^{a z}}{{e}^{q z} - 1} = \sum_{n=0}^{\infty} B_{n,\chi} \frac{{z}^{n}}{n !}

q \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; \chi \in G_{q} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; z \ne 0 \;\mathbin{\operatorname{and}}\; \left|z\right| < \frac{2 \pi}{q}
Fungrim symbol Notation Short description
Sumnf(n)\sum_{n} f(n) Sum
Expez{e}^{z} Exponential function
GeneralizedBernoulliBBn,χB_{n,\chi} Generalized Bernoulli number
Powab{a}^{b} Power
Factorialn!n ! Factorial
Infinity\infty Positive infinity
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
DirichletGroupGqG_{q} Dirichlet characters with given modulus
CCC\mathbb{C} Complex numbers
Absz\left|z\right| Absolute value
Piπ\pi The constant pi (3.14...)
Source code for this entry:
    Formula(Equal(Sum(Mul(chi(a), Div(Mul(z, Exp(Mul(a, z))), Sub(Exp(Mul(q, z)), 1))), For(a, 1, q)), Sum(Mul(GeneralizedBernoulliB(n, chi), Div(Pow(z, n), Factorial(n))), For(n, 0, Infinity)))),
    Variables(q, chi, z),
    Assumptions(And(Element(q, ZZGreaterEqual(1)), Element(chi, DirichletGroup(q)), Element(z, CC), NotEqual(z, 0), Less(Abs(z), Div(Mul(2, Pi), q)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC