Fungrim home page

Fungrim entry: a7095f

1π=122F1 ⁣(12,12,1,1)\frac{1}{\pi} = \frac{1}{2} \,{}_2F_1\!\left(\frac{1}{2}, -\frac{1}{2}, 1, 1\right)
\frac{1}{\pi} = \frac{1}{2} \,{}_2F_1\!\left(\frac{1}{2}, -\frac{1}{2}, 1, 1\right)
Fungrim symbol Notation Short description
Piπ\pi The constant pi (3.14...)
Hypergeometric2F12F1 ⁣(a,b,c,z)\,{}_2F_1\!\left(a, b, c, z\right) Gauss hypergeometric function
Source code for this entry:
    Formula(Equal(Div(1, Pi), Mul(Div(1, 2), Hypergeometric2F1(Div(1, 2), Neg(Div(1, 2)), 1, 1)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC