# Fungrim entry: e2445d

$F\!\left(\phi, m\right) = \sin(\phi) R_F\!\left(\cos^{2}\!\left(\phi\right), 1 - m \sin^{2}\!\left(\phi\right), 1\right)$
Assumptions:$\phi \in \mathbb{C} \;\mathbin{\operatorname{and}}\; m \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \frac{-\pi}{2} \le \operatorname{Re}(\phi) \le \frac{\pi}{2}$
TeX:
F\!\left(\phi, m\right) = \sin(\phi) R_F\!\left(\cos^{2}\!\left(\phi\right), 1 - m \sin^{2}\!\left(\phi\right), 1\right)

\phi \in \mathbb{C} \;\mathbin{\operatorname{and}}\; m \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \frac{-\pi}{2} \le \operatorname{Re}(\phi) \le \frac{\pi}{2}
Definitions:
Fungrim symbol Notation Short description
IncompleteEllipticF$F\!\left(\phi, m\right)$ Legendre incomplete elliptic integral of the first kind
Sin$\sin(z)$ Sine
CarlsonRF$R_F\!\left(x, y, z\right)$ Carlson symmetric elliptic integral of the first kind
Pow${a}^{b}$ Power
Cos$\cos(z)$ Cosine
CC$\mathbb{C}$ Complex numbers
Pi$\pi$ The constant pi (3.14...)
Re$\operatorname{Re}(z)$ Real part
Source code for this entry:
Entry(ID("e2445d"),
Formula(Equal(IncompleteEllipticF(phi, m), Mul(Sin(phi), CarlsonRF(Pow(Cos(phi), 2), Sub(1, Mul(m, Pow(Sin(phi), 2))), 1)))),
Variables(phi, m),
Assumptions(And(Element(phi, CC), Element(m, CC), LessEqual(Div(Neg(Pi), 2), Re(phi), Div(Pi, 2)))))

## Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC