Fungrim home page

Fungrim entry: 2a4195

Yν ⁣(z)=cos ⁣(πν)Jν ⁣(z)Jν ⁣(z)sin ⁣(πν)Y_{\nu}\!\left(z\right) = \frac{\cos\!\left(\pi \nu\right) J_{\nu}\!\left(z\right) - J_{-\nu}\!\left(z\right)}{\sin\!\left(\pi \nu\right)}
Assumptions:νCZ  and  zC{0}\nu \in \mathbb{C} \setminus \mathbb{Z} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\}
Y_{\nu}\!\left(z\right) = \frac{\cos\!\left(\pi \nu\right) J_{\nu}\!\left(z\right) - J_{-\nu}\!\left(z\right)}{\sin\!\left(\pi \nu\right)}

\nu \in \mathbb{C} \setminus \mathbb{Z} \;\mathbin{\operatorname{and}}\; z \in \mathbb{C} \setminus \left\{0\right\}
Fungrim symbol Notation Short description
BesselYYν ⁣(z)Y_{\nu}\!\left(z\right) Bessel function of the second kind
Coscos(z)\cos(z) Cosine
Piπ\pi The constant pi (3.14...)
BesselJJν ⁣(z)J_{\nu}\!\left(z\right) Bessel function of the first kind
Sinsin(z)\sin(z) Sine
CCC\mathbb{C} Complex numbers
ZZZ\mathbb{Z} Integers
Source code for this entry:
    Formula(Equal(BesselY(nu, z), Div(Sub(Mul(Cos(Mul(Pi, nu)), BesselJ(nu, z)), BesselJ(Neg(nu), z)), Sin(Mul(Pi, nu))))),
    Variables(nu, z),
    Assumptions(And(Element(nu, SetMinus(CC, ZZ)), Element(z, SetMinus(CC, Set(0))))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC