Fungrim home page

0.00000000000000000000000000000

From Ordner, a catalog of real numbers in Fungrim.

DecimalExpression [entries]Frequency
0.000000000000000000000000000000     [569278 671fcb f0d72c 1eeccf bcdfc6 c19cd6 2ea614 3df748 c3e340 a0ba58 655f6b d5917b c0dea0 dab889 6b8963 5d16e5 abbe42 d81f05 099b19 55bf43 9973ef 3fb309 7137a2 f617c0 3478af 483e7e 34136c e1497f 644d75 23077c 7e449a 62eade 498036 54f420 65c610 0650f8 6520e7 0d8639 7c014b 0e5d90 937fa9 0ce854 d0bba3 af31ae a807a7 86333d 62b0c4 74274a 978576 e00d9e 9758ac b1d132 f7ce46 050c46 3cac28 271314 d60119 9be916 ed4f6f 9b3fde cc2ebb f78fa0 3c87b9 5b87f3 12b1d0 4b3947 56d710 d6703a 0e2bcb 2a8ec9 b506ad 1ba9a5 940c48 cb5071 452407 dfea7d 4d2e45 da1873 f946a5 d7962e 51b241 2b2066 d530b1 f0639c 82b410 69b32e ca8b0a 71a0ff fd82ab 8027e8 45267a 2aaba8 e7224b c98bad 9e388b 6dda7a b786ad 41f950 e9f966 7ae3ed f045b3 12ce84 07a654 0feb19 60772e 3f1547 1fc63b 108daa 233814 4d1365 22c4f6 40baa9 271b73 9a2054 0ed5e2 7b5755 d6d836 8bac89 ed4cca dfb55b 162ecf 4d26ec d154dd a5980a 5ff181 24d810 91f156 7a7d1d 2e576e 830dd4 c01d22 20e530 f9b773 ce39ac dacd74 931201 ea9e2f 984d9c 4a5b9a 4d65e5 a8ab81 cbbf16 c6038c c53d94 192a3e d9a7a3 c03f78 57d31a 155343 925fdf 3d46ea f46e0e 4cb707 0cf60d 08ff0b 3131df 18ec99 d43f30 38fa65 fda595 de0638 89c9e4 3e84e3 baf960 579595 f67fa2 338b5c 685892 fda084 ae791d a98234 5f0adb 59184e 9673f7 cc523f 7dab87 f14471 99ff4c 6d3591 30b67b b4165c d280c5 2d3356 b41d08 4268fc e2a734 599417 423b36 781eae 127f05 b891d1 22b67a b6017f d2f183 8671a4 09e2ed 51fd98 bc755b f7a866 55d23d 99dc4a 077394 51206a 6cbce8 098757 66df95 2fec14 fc3c44 9e30e7 c5a9cf 775e10 60541a 8c21f5 a26ac7 5eb446 332721 5bdba2 1f88a4 48a1c6 b18020 b81ca0 01bbb6 93a877 c54c85 798c5d 4bf3da 64081c ed6590 2ada0f 791c44 bc2f88 bc4d0a 858c8f 9448f2 f5c3c5 8ae153 a07d28 c5d388 390158 d8cac6 5404ce cf5355 62f23c d0a331 9357b9 4246ae 8d0629 ddc7e1 f07e9d 8f0a91 348b26 59e5df 72db94 d70b12 b049dc 22a9cd e7aef3 d7136f 34d1c6 16a1f4 831ea4 73f5e7 66efb8 9b7d8c b01280 b1a260 a2f5a9 463077 5cb675 9ccaef 13895b 415911 c60679 7466a2 c5d844 b0f500 02a8d7 692e42 ca9123 a747a4 cc234c 0ba30f 8f71cb 287e28 fa6ff7 a222ed fbfb81 39fe5f f171a6 22ee07 bb8a75 e1dd64 071a94 a471d0 b7d740 1eaaed 82c978 7c4457 20bf69 6ed553 674afa 7609c8 eda1e3 a14cfc 005478 8c2862 dad27b 74be8f 0895b1 9d26d2 2dcf0c 33aa62 f50ec9 f42042 2362af 9001e6 8697b8 dcc1e5 1c770c 33ee4a ce327b f91d1c 5c054e 903962 3ff35f 0d82d4 08fb81 73b76c afabeb ed210c 4a4739 6b3af0 1d730a 21241f 4b65d0 e30d7e f1dd8a 8c9ba1 2f3ed3 93e149 190843 6cabb7 be9790 e60205 f80439 38c2d5 8a316c a1ca3e cc4cd8 3d6d7e d25d10 5a11eb 0a7f30 2a4b9d 5261e3 d9403e e722ca d39c46 caf8cf 5c9675 3e05c6 cc59e4 dc6806 f7f84e 3f5711 2a11ab f1bd89 c58f46 114f9e 1403b5 e5bba3 db4e29 741859 209fc8 c76e72 46f244 8547ab d35c54 e6d333 ef4b53 8f43ab 00c331 52302f 645c98 3009a7 af4516 ac4d13 dd67fb 557b19 d0d91a e1797b 649dc0 75cb8c e63fe8 1349b5 7a168a 687b4d 931d89 7680d3 21e21a be3e09 458198 c52772 a34260 90a1e1 2ae142 54951a b66d1e 663d9c d2adb6 ab1c77 98703d a4e947 d774fe 417619 471485 80f7dc e2bc80 9c9173 d8c6d1 3e1435 6ade92 90f31e 5db5f2 c0ad12 1d4638 959a25 08ad28 367ac2 f20503 a1f7ea 3d5327 bf8f37 fddfe6 da16db 22a42f 11dfd2 ab5af3 66fefb ad8db2 0c8084 c24323 41cf8e 6c2b31 77e519 cb493d 5e1d3b add3ea a68e0e f55f0a bf533f d7a4e5 bdea17 a4cc3b 8519dd 71a264 84f403 d41a95 f50c74 cdb587 7774a3 7f8a58 775637 948167 cfefa9 55cd70 26fd1b 453c11 8f176c eae0de 7aa9be 8d304b af984e 532f31 612b21 81ffcd 68cc2f cb93ea 04d3a6 c2dcfa 58d91f e87c43 a4f9c9 00cdb7 23961e e13fe9 921ef0 e010c9 75231e 5ab6bf 8b825c 7efe21 c92a6f e50532 298bb1 270e67 4f5575 dd9d26 af512f 21f4f9 34fafa c89abc 0e2425 3bffa9 c8d10e 53d869 d4e418 1026e3 fbe121 c7d4c2 1f0577 1e142c df5f38 6c28fa 2870f0 d8e37d ed302a 01422b 47e587 e50a56 e39456 398bb7 a08583 778fa2 5ada5f 82926c 774d37 bac5fb b788a1 314807 e3f8a4 e3005f 52ea5f 583bf9 2ba423 dfbddd a6776b 356d7a 6af603 0d92f6 e85dee 3fe47b fff8ff 8356db b16d00 8bb972 be533c a19141 4c41ad a75407 bad502 d1b3b5 3e71f4 3009a8 21f156 c87ff4 48765b e3d274 255576 f79ff0 0373dc 997777 9ee737 636929 f42652 81aeba 03ee0b d10029 6191cd 1f1fb4 3be335 214a91 90a864 0207dc ad8a9a ae6718 621a9b 037342 1d62a7 3fe68f b10ca7 e1f15b 36ae10 569d5c 9a95a5 9bda2f 95e508 b5049d cc3a51 8b4f7f 9a8d4d 0983d1 936694 622772 02d9e4 99aa38 d3b45d 2a69ce 6f8e14 7e1850 6a6a09 e2c10d 79f20e d37d0f 443759 c1bee1 31adf6 2398a1 087a7c f303c9 f4fd7d 668877 819b5f f88455 09cd0b a9cdda 324483 b58070 b60924 4091ad ff58cf dd5f43 78c19c 3a84d6 876844 265d9c 5384f3 8e06be 02e3d2 5a3c4a 9fbe4f cb6c9c d2714b 014c4e c9bcf7 d12aa0 853a62 d87f6e 7212ea 0096a8 d967af 6cf802 12d5ab 7527f1 1feda6 0c09cc 594cc3 249fd6 83065e 1dcf7e 86bc7d 7b3ac4 6395ee a51a4b 926b36 fa65f3 2246a7 f5d28c c12a41 9ba78a 1c67c8 7c90eb 9d5b81 3bb7e4 5d6f99 9638c1 1277f6 292d70 67f2ef f0414a 4e4380 f4750b 561d75 7c50d1 522b04 813d25 0fdb94 a71381 4e7120 394cdc 21839d 627c9c 7ac286 4877d1 60c6da c62afa d8025b ae3110 e78989 66eb8b 85eebc 1635f5 0d8e03 7c78ea f71675 6547da 7377c8 b3c440 499cfc 4fa169 b14da0 2caf78 5c2b08 473c36 cf93bc 41ece5 4c6c43 290f36 001a0b 9d7c61 b1d07b 4c6267 c941c4 448d90 42c1f5 5aceb9 6e4f58 a59981 230a49 799b5e 3e0817 7a56c2 b07652 0d3b91 ad9caa 54340e e9465d ecb406 d1f5c5 d1f218 6636f2 fa3b53 e36542 050ee1 7a36e5 bba4ec 25b7bd 150b3e 849751 37e644 7a85b7 dac0aa 709905 ff0c9f 4d0e14 ba7baf 555e10 fc2582 042551 27b169 f1afc0 ecd36f 980014 0e209c faa118 3f6d40 7131cd 3544a0 19d7d9 856db2 aed6bd 4cf1e9 279e4f 4fe0ff b8ed8f 4e4e0f f0bcb5 982e3b a7dbf6 e6ff64 c26bc9 a203e9 c3d8c2 1d2811 626026 ec2dd5 e9232b 39ce44 a5e568 6f7746 081205 766302 4e914f 963daf a5852d 13a092 f5e153 a2b0f9 6ef3d1 1a7e22 a2af66 26418b 9d66de 2853d4 b2d723 2e1cc7 ed3ff9 ef9f8a 8cac46 a7ac51 b468f3 a4eecf 41f67b 4b6ccb 6d936e 829185 af0dfc 33e034 d6415e 638fa6 c1ffd4 b5a382 a7d592 bf3e29 8dff72 7df1c4 03d70f 35cb93 ea304c 21c2f7 4f1441 42c7f1 8c96a5 cbcad9 b23575 7932c3 f8de2e fc267b fa30c7 a4e47f 55498b 4986ed fe4967 9a06fb b6b014 b4c968 70111e 5752b8 c60033 a2e9dd 3db90c 411f3b a020e9 fa7251 08329d cb152f e6dc09 6e1f13 0cc301 dbe634 e93f43 f6b4a2 3c88a7 d9765b 185efc 310f36 83a535 cdd7e7 53026a d0c9ff a4ac32 e464ec eec21a e488dc cac83e 4b4816 cecede e1e71f 18d955 4c1988 3f96c1 794106 a787eb f04e01 99a9c6 a4d6fc 67978f a9c825 13ed5e cfb999 a6bdf5 ad8df6 5dc1c0 c40df4 bd7d8e cb0a9b b0a4e9 05e9ae 90ac58 6b9935 a0b0b3 e2b379 9b868d 19f13b 24a793 10ed14 4f3e30 80279d 4b20ab 81f531 9395fc 7fbbe8 306ef7 807f3f e2288d 001234 b8ca70 23ed69 c640bf b464d3 56d4ff e68f82 026e44 d829be b93d09 f1fd51 6582c4 4cfeac 633265 1cec67 59a5d6 2a47d7 6b13be 588889 6b9f81 0d3186 768c77 d99808 31eecc 72712c 338055 ff93d0 693e0e 9a0bc8 21d9a0 4aab8a a05466 94f646 eca10b faf448 255142 85e42e 1165fc b7e899 ec0054 c743eb 07584a b16177 90af98 e78084 7adfd6 e44796 0010f3 10f3b2 950e5a 6000d0 6c4567 def37e a0d13f b3d435 a93679 f12e20 be0f54 ce8ee4 2e9d0c b7f13b 3e08b6 48910b 78131f ce2395 f9ca94 a0dff6 ff5e82 4f3d2b 7783f9 cebe1b f5887b 476642 cf7ee3 dce62c a42212 e37535 adf83a 9376ec cf5caa 693cfe e74d86 a255e1 a1941b 6d8bf0 0888b3 22fb4a 1596d2 f12569 9933df 37ffb7 351d87 c92da4 c7f85b 055b0a  ... 1000 of 1718 shown]
Sin(0)     [c52772]
Arg(1)     [c423d2]
Log(1)     [d496b8 07731b]
Atan(0)     [645e30]
Sin(Pi)     [e2161b]
Sqrt(0)     [9d5b81]
GCD(0, 0)     [19ceaa]
LCM(0, 0)     [af512f]
Totient(0)     [6d37c9]
Re(ConstI)     [249fd6]
BarnesG(0)     [5cb675]
Fibonacci(0)     [b506ad 9d26d2]
BernoulliB(7)     [aed6bd]
BernoulliB(5)     [aed6bd]
BernoulliB(9)     [aed6bd]
BernoulliB(3)     [aed6bd]
BernoulliB(23)     [aed6bd]
BernoulliB(31)     [aed6bd]
BernoulliB(37)     [aed6bd]
BernoulliB(13)     [aed6bd]
BernoulliB(11)     [aed6bd]
Sinc(Infinity)     [5e0c58]
BernoulliB(27)     [aed6bd]
LambertW(0, 0)     [0be17d]
BernoulliB(25)     [aed6bd]
BernoulliB(39)     [aed6bd]
BernoulliB(49)     [aed6bd]
BernoulliB(17)     [aed6bd]
BernoulliB(41)     [aed6bd]
BernoulliB(29)     [aed6bd]
BernoulliB(21)     [aed6bd]
BernoulliB(19)     [aed6bd]
BernoulliB(15)     [aed6bd]
BernoulliB(47)     [aed6bd]
BernoulliB(45)     [aed6bd]
BernoulliB(33)     [aed6bd]
BernoulliB(43)     [aed6bd]
BernoulliB(35)     [aed6bd]
RiemannZeta(-4)     [e50a56]
RiemannZeta(-2)     [e50a56]
RiemannZeta(-8)     [e50a56]
RiemannZeta(-6)     [e50a56]
RiemannZeta(-18)     [e50a56]
RiemannZeta(-28)     [e50a56]
RiemannZeta(-12)     [e50a56]
RiemannZeta(-16)     [e50a56]
RiemannZeta(-30)     [e50a56]
RiemannZeta(-26)     [e50a56]
RiemannZeta(-24)     [e50a56]
RiemannZeta(-10)     [e50a56]
RiemannZeta(-22)     [e50a56]
RiemannZeta(-14)     [e50a56]
RiemannZeta(-20)     [e50a56]
KeiperLiLambda(0)     [081205 faf448]
CarlsonRG(0, 0, 0)     [bcc121]
PrimePi(Pow(10, 0))     [5404ce]
Sinc(Neg(Infinity))     [a2f5a9]
EisensteinG(6, ConstI)     [a4109c]
EisensteinE(6, ConstI)     [a4109c]
IncompleteEllipticE(0, 0)     [a6c07e]
IncompleteEllipticE(0, m)     [be3e09]
IncompleteEllipticF(0, 0)     [ba1965]
HurwitzZeta(0, Div(1, 2))     [3db90c]
Add(Exp(Mul(Pi, ConstI)), 1)     [271314]
DedekindEta(Mul(ConstI, Infinity))     [6b9935]
ModularLambda(Mul(ConstI, Infinity))     [e8252c]
RealLimit(Sinc(x), For(x, Infinity))     [5e0c58]
ModularJ(Exp(Div(Mul(Pi, ConstI), 3)))     [9aa62c]
ArgMaxUnique(Sinc(x), ForElement(x, RR))     [b1a260]
RealLimit(Sinc(x), For(x, Neg(Infinity)))     [a2f5a9]
Sub(Sub(Pow(GoldenRatio, 2), GoldenRatio), 1)     [b464d3]
EisensteinE(4, Exp(Div(Mul(Mul(2, Pi), ConstI), 3)))     [3102a7]
EisensteinG(4, Exp(Div(Mul(Mul(2, Pi), ConstI), 3)))     [3102a7]
RightLimit(DedekindEta(Mul(ConstI, epsilon)), For(epsilon, 0))     [d8025b]
ComplexLimit(DedekindEta(tau), For(tau, Mul(ConstI, Infinity)))     [6b9935]
ComplexLimit(ModularLambda(tau), For(tau, Mul(ConstI, Infinity)))     [e8252c]
SequenceLimitInferior(Div(Totient(Add(n, 1)), Totient(n)), For(n, Infinity))     [33139b]
Decimal("0")     [faf448 d496b8 9d5b81 aed6bd]
1719 (#2)

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC