Fungrim home page

Fungrim entry: 3e08b6

Bx ⁣(a,b)=0xta1(1t)b1dt\mathrm{B}_{x}\!\left(a, b\right) = \int_{0}^{x} {t}^{a - 1} {\left(1 - t\right)}^{b - 1} \, dt
Assumptions:x[0,1]  and  aC  and  bC  and  Re(a)>0  and  Re(b)>0x \in \left[0, 1\right] \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) > 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(b) > 0
\mathrm{B}_{x}\!\left(a, b\right) = \int_{0}^{x} {t}^{a - 1} {\left(1 - t\right)}^{b - 1} \, dt

x \in \left[0, 1\right] \;\mathbin{\operatorname{and}}\; a \in \mathbb{C} \;\mathbin{\operatorname{and}}\; b \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \operatorname{Re}(a) > 0 \;\mathbin{\operatorname{and}}\; \operatorname{Re}(b) > 0
Fungrim symbol Notation Short description
IncompleteBetaBx ⁣(a,b)\mathrm{B}_{x}\!\left(a, b\right) Incomplete beta function
Integralabf(x)dx\int_{a}^{b} f(x) \, dx Integral
Powab{a}^{b} Power
ClosedInterval[a,b]\left[a, b\right] Closed interval
CCC\mathbb{C} Complex numbers
ReRe(z)\operatorname{Re}(z) Real part
Source code for this entry:
    Formula(Equal(IncompleteBeta(x, a, b), Integral(Mul(Pow(t, Sub(a, 1)), Pow(Sub(1, t), Sub(b, 1))), For(t, 0, x)))),
    Variables(x, a, b),
    Assumptions(And(Element(x, ClosedInterval(0, 1)), Element(a, CC), Element(b, CC), Greater(Re(a), 0), Greater(Re(b), 0))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC