Fungrim home page

Fungrim entry: 001a0b

(nk)nkkk{n \choose k} \ge \frac{{n}^{k}}{{k}^{k}}
Assumptions:nZ0  and  k{0,1,,n}n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; k \in \{0, 1, \ldots, n\}
{n \choose k} \ge \frac{{n}^{k}}{{k}^{k}}

n \in \mathbb{Z}_{\ge 0} \;\mathbin{\operatorname{and}}\; k \in \{0, 1, \ldots, n\}
Fungrim symbol Notation Short description
Binomial(nk){n \choose k} Binomial coefficient
Powab{a}^{b} Power
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Range{a,a+1,,b}\{a, a + 1, \ldots, b\} Integers between given endpoints
Source code for this entry:
    Formula(GreaterEqual(Binomial(n, k), Div(Pow(n, k), Pow(k, k)))),
    Variables(n, k),
    Assumptions(And(Element(n, ZZGreaterEqual(0)), Element(k, Range(0, n)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC