Fungrim home page

Fungrim entry: 33139b

lim infnφ ⁣(n+1)φ(n)=0\liminf_{n \to \infty} \frac{\varphi\!\left(n + 1\right)}{\varphi(n)} = 0
\liminf_{n \to \infty} \frac{\varphi\!\left(n + 1\right)}{\varphi(n)} = 0
Fungrim symbol Notation Short description
SequenceLimitInferiorlim infnaf(n)\liminf_{n \to a} f(n) Limit inferior of sequence
Totientφ(n)\varphi(n) Euler totient function
Infinity\infty Positive infinity
Source code for this entry:
    Formula(Equal(SequenceLimitInferior(Div(Totient(Add(n, 1)), Totient(n)), For(n, Infinity)), 0)))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC