From Ordner, a catalog of real numbers in Fungrim.
This page lists the top 250 decimal keys in Ordner ranked by frequency (the total number of entries where the value appears). This page excludes integer-valued keys from the list. See also: Top 250 real numbers, including integers and Top 250 real numbers by number of expressions.
Decimal | Expression [entries] | Frequency |
---|---|---|
3.14159265358979323846264338328 | Pi [848d97 77e519 bcdfc6 4b040d 83566f 235d0d 42d727 81f7db cb493d aac129 ... 10 of 854 shown] Arg(-1) [a8b41c] Im(Log(-1)) [590136 2f1f7b] Neg(Neg(Pi)) [a020e9 43cc72 60f858 1d730a 47acde 2ef763 d8791e f9f31d b7d740 81f7db ... 10 of 32 shown] 4 of 78 expressions shown | 854 (#4) |
2.71828182845904523536028747135 | ConstE [ce66a9 699c83 b93d09 99ff4c ea26d4 5d6f99 dc507f a1e634 30bd5b e50532 ... 10 of 32 shown] Exp(1) [9a944c] "Indirect use of e: Exp(...)" [848d97 52d827 bcdfc6 83566f 235d0d 21851b 2ea614 a0ba58 cfb999 35403b ... 10 of 362 shown] 3 of 3 expressions shown | 389 (#7) |
0.500000000000000000000000000000 | Div(1, 2) [47acde ad1eaf c7b921 a1a3d4 4c462b 7d559c 235d0d 72b5bd a498dd 27586f ... 10 of 289 shown] Sin(Div(Pi, 6)) [ad6b74] HurwitzZeta(0, 0) [150b3e] CarlsonRG(0, 0, 1) [d5ff09] 4 of 33 expressions shown | 320 (#8) |
6.28318530717958647692528676656 | Mul(2, Pi) [848d97 47acde d69b41 f1dd8a 83566f b0e1cb e54e61 fb7a63 30a054 21b67f ... 10 of 155 shown] Neg(Neg(Mul(2, Pi))) [4704f9 20d72c 47acde bf8f37] Im(Mul(Mul(2, Pi), ConstI)) [848d97 2090c3 e28209 57d31a 0c7de4 24a793 5161ab 83566f b0e1cb 6c71c0 ... 10 of 53 shown] Neg(Im(Neg(Mul(Mul(2, Pi), ConstI)))) [348b26 f0f53b] 4 of 6 expressions shown | 155 (#10) |
0.250000000000000000000000000000 | Div(1, 4) [390158 e30d7e f12e20 4b040d f1dd8a b7f13b 2f3ed3 e54e61 ed4cca aac129 ... 10 of 115 shown] Im(Div(ConstI, 4)) [5706ab 7f9273] Neg(Neg(Div(1, 4))) [7f9273 54daa9 7d7c65 95e9e4 4c8873] Neg(Im(Neg(Div(ConstI, 4)))) [5706ab] 4 of 5 expressions shown | 116 (#13) |
1.57079632679489661923132169164 | Asin(1) [722241] Acos(0) [3ff35f] Div(Pi, 2) [47acde 0b8fd6 8ef3d7 77e519 bfc13f 8bb972 efebb8 190843 8c368f 48910b ... 10 of 93 shown] Arg(ConstI) [735409] 4 of 31 expressions shown | 113 (#14) |
1.41421356237309504880168872421 | Sqrt(2) [81c491 e30d7e 4b040d 9d5b81 2f3ed3 f9190b 8c368f 9f2b18 c6c92a dabb47 ... 10 of 94 shown] Pow(2, Div(1, 2)) [7f9273] Abs(Add(1, ConstI)) [62b0c4 78131f fe2627 b468f3 69d0a3 078869 0ad836 9e30e7 4c8873 e54e61 ... 10 of 14 shown] Abs(Sub(1, ConstI)) [630eca 62b0c4 f1dd8a 2dcf0c 5174ea e54e61 7c50d1 8519dd] 4 of 12 expressions shown | 105 (#15) |
1.50000000000000000000000000000 | Div(3, 2) [4c0698 c6d6e2 fb7a63 42d727 72b5bd f9190b 9f2b18 4e4380 2806fd 3e71f4 ... 10 of 96 shown] Neg(Neg(Div(3, 2))) [1faf7a c85c2f 37ffb7 e93f43 618a9f 4e4380 771801 de8485 4c882a d4b12e ... 10 of 23 shown] Decimal("1.5") [8e06be 0c8084 ff0c9f 3009a8 9136b9] Neg(Decimal("-1.5")) [3009a8 0c8084 ff0c9f] 4 of 4 expressions shown | 101 (#16) |
0.577215664901532860606512090082 | ConstGamma [98f642 39fe5f 433a5c a2675b 014c4e 967bbb 39ce44 ee3dc5 cf70ce 28bf9a ... 10 of 57 shown] StieltjesGamma(0) [e5bd3c 8ae153] StieltjesGamma(0, 1) [8ae153] Neg(Neg(ConstGamma)) [ea2482 f946a5 686524 acfc1f a4cc3b c76eaf 3fe553] 4 of 16 expressions shown | 58 (#22) |
1.73205080756887729352744634151 | Sqrt(3) [98f642 8356db 7697af f12e20 e3e4c5 9d5b81 967bbb 30a054 9ea739 68b73d ... 10 of 55 shown] Im(Mul(Sqrt(3), ConstI)) [21b67f 175b7a 0abbe1 e3e4c5] Im(Mul(ConstI, Sqrt(3))) [4af6db] Im(Add(1, Mul(Sqrt(3), ConstI))) [0abbe1] 4 of 8 expressions shown | 56 (#23) |
0.785398163397448309615660845820 | Atan(1) [157c6c 0c9939] Div(Pi, 4) [47acde 71a0ff 6c3ba9 cd55cf 157c6c 79f20e 08cda4 3b8c97 6d3591 8a9884 ... 10 of 25 shown] CarlsonRC(1, 2) [eac389] Arg(Sqrt(ConstI)) [0ad836] 4 of 35 expressions shown | 52 (#24) |
3.62560990822190831193068515587 | Gamma(Div(1, 4)) [ce66a9 cc22bf e30d7e 4b040d f1dd8a 1eaaed 9e30e7 e54e61 ae6718 e03b7c ... 10 of 52 shown] 1 of 1 expressions shown | 52 (#25) |
0.915965594177219015054603514932 | ConstCatalan [ce66a9 1f1fb4 d6703a fd82ab c2976e ba58e0 79f20e 08cda4 6d3591 ed4cca ... 10 of 47 shown] Im(PolyLog(2, ConstI)) [1d65c2 208da7] Im(Mul(ConstCatalan, ConstI)) [208da7] DirichletL(2, DirichletCharacter(4, 3)) [9e9922] 4 of 37 expressions shown | 47 (#28) |
9.86960440108935861883449099988 | Pow(Pi, 2) [47acde ac8d3c 11687b 39ce44 af0dfc 575b8f e03b7c 0477b3 a91200 951f86 ... 10 of 40 shown] Mul(6, PolyLog(2, 1)) [9206a3] Mul(6, RiemannZeta(2)) [67bb53] Sub(DigammaFunction(Div(1, 4), 1), Mul(8, ConstCatalan)) [8ee7c9] 4 of 5 expressions shown | 43 (#30) |
0.333333333333333333333333333333 | Div(1, 3) [d3b45d 98f642 8356db e2035a e3e4c5 6c71c0 7f3485 68b73d f48f54 8f4e31 ... 10 of 40 shown] Neg(Div(-1, 3)) [0983d1] Im(Div(ConstI, 3)) [52302f] Neg(Neg(Div(1, 3))) [68b73d e7b5be fda595 685892 7f3485 90c66a] 4 of 6 expressions shown | 42 (#31) |
13.1450472065968744128561367196 | Pow(Gamma(Div(1, 4)), 2) [cc22bf e30d7e 4b040d f1dd8a 1eaaed 9e30e7 e54e61 5c178f 5d2c01 0d9352 ... 10 of 41 shown] 1 of 1 expressions shown | 41 (#33) |
9.42477796076937971538793014984 | Mul(3, Pi) [639d7b 64a808 3e05c6 47acde 4d2c10 eda57d 255142 be0f54 37ffb7 b468f3 ... 10 of 38 shown] Neg(Neg(Mul(3, Pi))) [639d7b e5bba3] Im(Mul(Mul(3, Pi), ConstI)) [7a56c2] 4 of 4 expressions shown | 38 (#34) |
1.77245385090551602729816748334 | Sqrt(Pi) [fae9d3 47acde cc22bf e30d7e b5bd5d 4b040d e1797b 2aaba8 1eaaed 6582c4 ... 10 of 35 shown] Gamma(Div(1, 2)) [8fab22 f826a6] 3 of 3 expressions shown | 36 (#36) |
1.61803398874989484820458683437 | GoldenRatio [d774fe e09458 31f52c 98a765 42d727 bceed4 050fdb 6d2709 0cd1a4 6a11ce ... 10 of 35 shown] Neg(Neg(GoldenRatio)) [24107d] Div(Add(1, Sqrt(5)), 2) [77d2f8] Mul(2, Cos(Div(Pi, 5))) [98a765] 4 of 11 expressions shown | 35 (#38) |
0.750000000000000000000000000000 | Div(3, 4) [ce66a9 d3b45d c4febd 4d2c10 e2035a cb6c9c fb7a63 d15f11 b347d3 fa8e96 ... 10 of 34 shown] Neg(Neg(Div(3, 4))) [303827 3047b1] Im(Mul(Div(3, 4), ConstI)) [c2c002 d3b45d c4febd e2035a 9b868d 80f43a 0ce854 fa8e96] Im(Add(Div(1, 3), Mul(Div(3, 4), ConstI))) [9b868d c2c002 d3b45d e2035a] 4 of 5 expressions shown | 34 (#39) |
2.41421356237309504880168872421 | Add(Sqrt(2), 1) [4256f0 3fb309 8c368f 7f9273 8c4ab4 2f3ed3 c6c92a 6cbce8 dd5f43] Add(1, Sqrt(2)) [25435b e04867 4c1db8 545e8b 7ea1ad 303827 4cd504 3a56d8 b136bd 6e9544 ... 10 of 21 shown] 2 of 2 expressions shown | 29 (#43) |
1.08643481121330801457531612151 | JacobiTheta(3, 0, ConstI) [390158 8356db f12e20 7d7c65 cb6c9c 72f583 2f3ed3 e2bc80 d15f11 4c8873 ... 10 of 29 shown] Div(Pow(Pi, Div(1, 4)), Gamma(Div(3, 4))) [d15f11] Div(Gamma(Div(1, 4)), Mul(Sqrt(2), Pow(Pi, Div(3, 4)))) [1403b5] 4 of 4 expressions shown | 29 (#44) |
1.20205690315959428539973816151 | RiemannZeta(3) [d6703a e93ca8 45267a 3a5167 39ce44 ef2c71 856317 8a9884 b347d3 9923b7 ... 10 of 28 shown] HurwitzZeta(3, 1) [b4ed44] MultiZetaValue(2, 1) [345c26] Sum(Div(HarmonicNumber(n), Pow(Add(n, 1), 2)), For(n, 1, Infinity)) [345c26] 4 of 5 expressions shown | 28 (#45) |
2.23606797749978969640917366873 | Sqrt(5) [390158 cb6c9c d0d91a 9d5b81 bceed4 050fdb 6ade92 344963 223ce1 9c53d7 ... 10 of 24 shown] Abs(Add(1, Mul(2, ConstI))) [b58070] Abs(Mul(Div(1, 2), Add(1, Mul(Sqrt(19), ConstI)))) [3ee358] 4 of 4 expressions shown | 26 (#49) |
0.866025403784438646763723170753 | Sin(Div(Pi, 3)) [3c833f] Div(Sqrt(3), 2) [2371b9 3c833f 3aed02] IncompleteEllipticE(Div(Pi, 3), 1) [3aed02] Im(Exp(Div(Mul(Pi, ConstI), 3))) [0c7de4 ec0054 0c8084 9aa62c] 4 of 10 expressions shown | 26 (#51) |
2.50662827463100050241576528481 | Sqrt(Mul(2, Pi)) [84f403 47acde 630eca ace837 d3baaf 62b0c4 28237a 53026a e54e61 3f1547 ... 10 of 17 shown] Pow(Mul(2, Pi), Div(1, 2)) [931d89 2a47d7 32e162 6d0a95 80f7dc b7fec0 a0ca3e] 3 of 3 expressions shown | 24 (#55) |
2.09439510239319549230842892219 | Div(Mul(2, Pi), 3) [47acde 49514d 2f6805] Arg(Add(-1, Mul(Sqrt(3), ConstI))) [21b67f] Im(Div(Mul(Mul(2, Pi), ConstI), 3)) [ea3e3c 4af6db 1b2d8a 4a200a 204acd ad91ae 13cac5 0c7de4 21b67f 83566f ... 10 of 19 shown] Arg(Exp(Div(Mul(Mul(2, Pi), ConstI), 3))) [ea3e3c 4af6db 1b2d8a 4a200a 204acd ad91ae 13cac5 0c7de4 21b67f 83566f ... 10 of 19 shown] 4 of 8 expressions shown | 22 (#56) |
2.35619449019234492884698253746 | CarlsonRD(0, 1, 1) [84ea08] Div(Mul(3, Pi), 4) [64a808 3e05c6 47acde eda57d b468f3 37ffb7 61c002 add3ea 78131f 4e4380 ... 10 of 22 shown] CarlsonRJ(0, 1, 1, 1) [64a808] Im(CarlsonRD(0, -1, -1)) [d52bda] 4 of 13 expressions shown | 22 (#57) |
5.56832799683170784528481798212 | Pow(Pi, Div(3, 2)) [9e30e7 5d2c01 0d9352 f9190b 3b272e 9f2b18 4dabda 9f3474 63644d 5174ea ... 10 of 22 shown] 1 of 1 expressions shown | 22 (#61) |
0.367879441171442321595523770161 | Exp(-1) [41ece5 9be916 17eaad 8d486c ee86fb 44ad09 55498b a34260 72b6ca 0d3b91 ... 10 of 14 shown] Div(1, ConstE) [a172c7 636929 b93d09 30bd5b 58c19a 050c46 314807 d09380] Neg(Neg(Exp(-1))) [41ece5 9be916 17eaad 8d486c ee86fb 44ad09 55498b a34260 72b6ca 0d3b91 ... 10 of 14 shown] Neg(Neg(Div(1, ConstE))) [a172c7 636929 b93d09 314807 d09380] 4 of 4 expressions shown | 22 (#62) |
1.83787706640934548356065947281 | Log(Mul(2, Pi)) [37a95a a5d65f 0ad263 47acde af31ae 8c96a5 a54fb0 95f771 b64782 2398a1 ... 10 of 20 shown] 2 of 2 expressions shown | 20 (#64) |
0.318309886183790671537767526745 | Div(1, Pi) [68b73d cac83e c7f7a5 c6c108 47acde 4c0698 a7095f 7ae3ed 57fcaf de9800 ... 10 of 17 shown] Neg(Im(Div(1, Mul(Pi, ConstI)))) [22b67a da1873] Mul(Div(1, 2), Hypergeometric2F1(Div(1, 2), Neg(Div(1, 2)), 1, 1)) [a7095f] Mul(Div(1, 4), Hypergeometric2F1(Neg(Div(1, 2)), Neg(Div(1, 2)), 1, 1)) [c6c108] 4 of 8 expressions shown | 19 (#65) |
4.24264068711928514640506617263 | Sqrt(18) [9d5b81] Mul(3, Sqrt(2)) [669765 f47947 534335 9f2b18 62b0c4 303827 060366 e04867 324483 63644d ... 10 of 18 shown] 3 of 3 expressions shown | 19 (#66) |
0.166666666666666666666666666667 | Div(1, 6) [669765 2fabeb fba07c 177de7 c03f78 688efb 82b410 62ffb3 588889 5f0adb ... 10 of 19 shown] BernoulliB(2) [aed6bd] 3 of 3 expressions shown | 19 (#67) |
0.125000000000000000000000000000 | Div(1, 8) [5278da 8c368f 831ea4 2744d4 dc507f a255e1 a17386 13f971 204acd a0dff6 ... 10 of 19 shown] Neg(Neg(Div(1, 8))) [831ea4 f178f2 9758ac b58070] 2 of 2 expressions shown | 19 (#68) |
0.693147180559945309417232121458 | Log(2) [8c368f 177de7 e4cdf1 bad5d9 5df909 dad27b 4f3d2b d496b8 2e40b8 140815 ... 10 of 17 shown] Neg(Neg(Log(2))) [4f3d2b] 3 of 3 expressions shown | 17 (#72) |
0.881373587019543025232609324980 | CarlsonRC(2, 1) [a15c03] CarlsonRF(1, 1, 2) [4cd504] Log(Add(1, Sqrt(2))) [7ea1ad f47947 534335 6e9544 f5d489 303827 4d7098 25435b e04867 4cd504 ... 10 of 17 shown] IncompleteEllipticF(Div(Pi, 4), 1) [f5d489] 4 of 4 expressions shown | 17 (#74) |
0.666666666666666666666666666667 | Div(2, 3) [bd319e 693cfe 1a15f9 01bbb6 e72e96 588889 324483 9a8d4d fb7a63 c362e8 ... 10 of 16 shown] Integral(Div(Mul(Pow(JacobiTheta(2, 0, Mul(ConstI, t)), 4), Pow(JacobiTheta(4, 0, Mul(ConstI, t)), 2)), Add(1, Pow(t, 2))), For(t, 0, Infinity)) [1a15f9] 2 of 2 expressions shown | 16 (#78) |
1.04719755119659774615421446109 | Div(Pi, 3) [47acde 799742 3aed02 140815 c584c3 340936 3c833f 706783] Atan(Sqrt(3)) [706783] Im(Div(Mul(Pi, ConstI), 3)) [9aa62c 0c7de4 27b2c7 ec0054 0c8084] Arg(Exp(Div(Mul(Pi, ConstI), 3))) [0c7de4 ec0054 0c8084 9aa62c] 4 of 11 expressions shown | 15 (#79) |
1.64493406684822643647241516665 | PolyLog(2, 1) [9206a3] RiemannZeta(2) [9923b7 a01b6e a5e52e 7cb17f 67bb53 e93ca8 856317] HurwitzZeta(2, 1) [575b8f] Div(Pow(Pi, 2), 6) [47acde a91200 ac8d3c a01b6e fa0292 babd3c 575b8f fbc53d] 4 of 9 expressions shown | 15 (#80) |
12.5663706143591729538505735331 | Mul(4, Pi) [ce66a9 dbf388 47acde dc507f 0479f5 d6703a 7a56c2 0d8639 d637c5 d8d820 ... 10 of 14 shown] Im(Mul(Mul(4, Pi), ConstI)) [dbf388 7a56c2 d637c5 37e644 ebc673] 3 of 3 expressions shown | 14 (#83) |
31.0062766802998201754763150671 | Pow(Pi, 3) [921d61 2fabeb e83059 47acde c60033 eda0f3 5b87f3 45267a 03aca0 bb88c8 ... 10 of 14 shown] 2 of 2 expressions shown | 14 (#84) |
0.707106781186547524400844362105 | Sqrt(Div(1, 2)) [61480c] Div(1, Sqrt(2)) [61480c 6d9ceb 0ad836 13c539 042551 63ba30] Div(Sqrt(2), 2) [61480c 4d7098 e3896e 5fc688 14f8c2] Sin(Div(Pi, 4)) [5fc688] 4 of 12 expressions shown | 14 (#86) |
2.82842712474619009760337744842 | Sqrt(8) [e37535 5f7334 9d5b81] Mul(2, Sqrt(2)) [669765 f9190b c9ead2 522f54 361801 fe4967 6b9f81 2991b5] Pow(2, Div(3, 2)) [60ac50] Abs(Add(1, Mul(Sqrt(7), ConstI))) [29c095] 4 of 5 expressions shown | 13 (#91) |
0.375000000000000000000000000000 | Div(3, 8) [669765 d70b12 add3ea a255e1 9ce413 62ffb3 f12e20 5384f3 87e9ed 0096a8 ... 10 of 12 shown] Neg(Neg(Div(3, 8))) [add3ea 675f23 d70b12] 2 of 2 expressions shown | 12 (#101) |
2.67893853470774763365569294097 | Gamma(Div(1, 3)) [807917 fba07c b95ffa 40a376 204acd 175b7a 0abbe1 e3e4c5 6c71c0 0fda1b ... 10 of 11 shown] 1 of 1 expressions shown | 11 (#103) |
0.768225422326056659002594179576 | DedekindEta(ConstI) [7cc3d3 9ce413 62ffb3 5706ab e9a269 9b8c9f 3a56d8 87e9ed be2f32 0701dc ... 10 of 11 shown] Div(Gamma(Div(1, 4)), Mul(2, Pow(Pi, Div(3, 4)))) [9b8c9f] 2 of 2 expressions shown | 11 (#104) |
2.50000000000000000000000000000 | Div(5, 2) [d3b45d 9522c6 588889 e2035a 6636f2 3b175b ad8a9a 9b868d c2c002 50f72f] Neg(Neg(Div(5, 2))) [d3b45d 9522c6 e2035a 6636f2 ad8a9a 9b868d c2c002] Decimal("2.5") [d9a7a3] | 11 (#106) |
3.46410161513775458705489268301 | Sqrt(12) [9d5b81] Mul(2, Sqrt(3)) [68b73d 669765 2fabeb b95ffa 2806fd 52302f 30a054 edad97] Abs(Add(1, Mul(Sqrt(11), ConstI))) [a498dd] | 10 (#109) |
0.107653919226484576615323445091 | HalphenConstant [e2bfdb f5e0b0 831ea4 d0993b 5c1e44 c26bc9 9758ac 6161c7 06c468 31adf6] UniqueZero(Brackets(JacobiTheta(2, 0, Div(Log(Neg(x)), Mul(Mul(2, Pi), ConstI)), 2)), ForElement(x, OpenInterval(0, 1))) [06c468] UniqueZero(Add(Neg(Div(1, 8)), Sum(Div(Mul(n, Pow(x, n)), Sub(1, Pow(Neg(x), n))), For(n, 1, Infinity))), ForElement(x, OpenInterval(0, 1))) [9758ac] UniqueZero(Brackets(Sum(Mul(Pow(Add(Mul(2, n), 1), 2), Pow(Neg(x), Div(Mul(n, Add(n, 1)), 2))), For(n, 0, Infinity))), ForElement(x, OpenInterval(0, 1))) [31adf6] 4 of 8 expressions shown | 10 (#110) |
0.523598775598298873077107230547 | Div(Pi, 6) [45740a d88dd1 47acde a91f8d f89d5a ad6b74 aac129 3c1021 eba27c] Neg(Neg(Div(Pi, 6))) [f89d5a] Atan(Div(1, Sqrt(3))) [3c1021] | 9 (#113) |
97.4090910340024372364403326887 | Pow(Pi, 4) [2d4828 47acde 2251c6 7cb17f 9bf21b 4064f5 a4f9c9 4a1b00 33690e] DigammaFunction(Div(1, 2), 3) [2251c6] | 9 (#114) |
1.31102877714605990523241979495 | EllipticK(-1) [afb22a] Re(EllipticK(2)) [630eca] CarlsonRF(0, 1, 2) [28237a] Neg(Im(EllipticK(2))) [630eca] 4 of 16 expressions shown | 9 (#116) |
0.0833333333333333333333333333333 | Div(1, 12) [b64782 9ce413 324483 3544a0 e50a56 6f8e14 ea26d4 4a3612 675f23] Neg(RiemannZeta(-1)) [e50a56] Neg(RiemannZeta(-13)) [e50a56] Neg(Neg(Div(1, 12))) [e50a56] | 9 (#119) |
1.28242712910062263687534256887 | ConstGlaisher [ce66a9 4a3612 dc507f b64782 3544a0 6f8e14 8b7991 ea26d4 6395ee] | 9 (#120) |
0.636619772367581343075535053490 | Div(2, Pi) [799b5e 47acde fdc94c d6703a 6fce07 d5b7e8] Sinc(Div(Pi, 2)) [fdc94c] Neg(Neg(Div(2, Pi))) [d5b7e8] Im(Div(Mul(2, ConstI), Pi)) [c18c95] 4 of 7 expressions shown | 8 (#121) |
0.918938533204672741780329736406 | Div(Log(Mul(2, Pi)), 2) [37a95a 99a9c6 2398a1 3544a0 f3b870 4a3612] Mul(Div(1, 2), Log(Mul(2, Pi))) [47acde f50c74] | 8 (#122) |
0.618033988749894848204586834366 | Sub(GoldenRatio, 1) [31f52c 05209f] Div(1, GoldenRatio) [2e0596 31f52c 6d2709] Div(Sub(Sqrt(5), 1), 2) [344963] Neg(Sub(1, GoldenRatio)) [ebfcd8 77c324] 4 of 7 expressions shown | 8 (#123) |
0.913579138156116821407242593401 | JacobiTheta(4, 0, ConstI) [3fb309 8c4ab4 7d7c65 7b362f 2f3ed3 66df95 dd5f43] JacobiTheta(2, 0, ConstI) [7d7c65] JacobiTheta(3, 0, Add(1, ConstI)) [4c8873] Mul(Brackets(Pow(2, Neg(Div(1, 4)))), JacobiTheta(3, 0, ConstI)) [7d7c65 4c8873] 4 of 5 expressions shown | 8 (#124) |
10.0265130985240020096630611392 | Mul(4, Sqrt(Mul(2, Pi))) [630eca ace837 28237a e54e61 f1dd8a afb22a 0ed5e2 5c178f] | 8 (#125) |
1.08232323371113819151600369654 | RiemannZeta(4) [e93ca8 7cb17f 8a9884 62de01] HurwitzZeta(4, 1) [2d4828] Div(Pow(Pi, 4), 90) [9bf21b 2d4828 33690e] Mul(Div(1, 90), Pow(Pi, 4)) [7cb17f] 4 of 6 expressions shown | 7 (#132) |
1.85407467730137191843385034720 | Abs(EllipticK(2)) [630eca] EllipticK(Div(1, 2)) [cc22bf] Abs(CarlsonRF(0, 1, -1)) [f1dd8a] EllipticPi(0, Div(1, 2)) [3c4979] 4 of 9 expressions shown | 7 (#135) |
5.44139809270265355178223477293 | Mul(Sqrt(3), Pi) [177de7 98f642 49d754 fda595 c362e8 45a969 967bbb] | 7 (#146) |
1.09861228866810969139524523692 | Log(3) [177de7 98f642 a91f8d 45a969 967bbb d496b8] | 6 (#147) |
1.38629436111989061883446424292 | Log(4) [d496b8] Mul(2, Log(2)) [177de7 5df909 2e40b8 89bed3 967bbb] Neg(Neg(Mul(2, Log(2)))) [89bed3] | 6 (#148) |
7.32772475341775212043682811946 | Mul(8, ConstCatalan) [d2f9fb 951f86 807c7d 8ee7c9 3e82c3] Sub(DigammaFunction(Div(1, 4), 1), Pow(Pi, 2)) [2744d4] | 6 (#149) |
4.44288293815836624701588099006 | Mul(Sqrt(2), Pi) [6e9544] Mul(Pi, Sqrt(2)) [7ea1ad 124d02 afd27a 25435b] Mul(Gamma(Div(1, 4)), Gamma(Div(3, 4))) [63ba30] | 6 (#151) |
0.414213562373095048801688724210 | Sub(Sqrt(2), 1) [669765 324483 a9ecff 2f3ed3 675f23 dd5f43] | 6 (#152) |
3.73205080756887729352744634151 | Add(2, Sqrt(3)) [8be46c 9ce413 6ade92 c584c3 b0049f 0bd544] | 6 (#153) |
0.847213084793979086606499123482 | Abs(EllipticE(2)) [5d2c01] Abs(AGM(1, ConstI)) [69d0a3] AGM(1, Div(1, Sqrt(2))) [6d9ceb] AGM(1, Div(Sqrt(2), 2)) [e3896e] 4 of 9 expressions shown | 6 (#154) |
7.87480497286120987214532299723 | Mul(Sqrt(2), Pow(Pi, Div(3, 2))) [9e30e7 7c50d1 4dabda 5d2c01] Im(Mul(Mul(Sqrt(2), Add(1, ConstI)), Pow(Pi, Div(3, 2)))) [69d0a3] Re(Mul(Mul(Sqrt(2), Sub(1, ConstI)), Pow(Pi, Div(3, 2)))) [5174ea] Re(Mul(Mul(Sqrt(2), Add(1, ConstI)), Pow(Pi, Div(3, 2)))) [69d0a3] 4 of 5 expressions shown | 6 (#155) |
14.1796308072441282183853398667 | Mul(8, Sqrt(Pi)) [3b272e 4c1988 9f3474 2573ba 1eaaed 8b4be6] | 6 (#156) |
1.18920711500272106671749997056 | Pow(2, Div(1, 4)) [4256f0 f12e20 be2f32 4b040d 0701dc e2bc80] | 6 (#157) |
26.2900944131937488257122734392 | Mul(2, Pow(Gamma(Div(1, 4)), 2)) [62b0c4 060366 c05ed8 9e30e7 7c50d1 2dcf0c] | 6 (#158) |
23.6244149185836296164359689917 | Mul(Mul(3, Sqrt(2)), Pow(Pi, Div(3, 2))) [9f2b18 62b0c4 060366 63644d c05ed8 2dcf0c] | 6 (#159) |
3.73935144084138308036412048150 | Mul(Mul(3, Sqrt(2)), Log(Add(1, Sqrt(2)))) [534335 303827 e04867 4c1db8 545e8b 3047b1] | 6 (#160) |
13.3286488144750987410476429702 | Mul(Mul(3, Sqrt(2)), Pi) [534335 303827 e04867 4c1db8 545e8b 3047b1] Im(Mul(Mul(Mul(3, Sqrt(2)), Pi), ConstI)) [3047b1 4c1db8 303827 e04867] | 6 (#161) |
1.24650470277092709705231034263 | Pow(Add(Sqrt(2), 1), Div(1, 4)) [3fb309 8c4ab4 2f3ed3 6cbce8 dd5f43] Pow(Add(1, Sqrt(2)), Div(1, 4)) [3a56d8] | 6 (#186) |
0.248754477033784262547252993576 | Log(ConstGlaisher) [4a3612 b64782 3544a0 6f8e14 ea26d4 6395ee] | 6 (#187) |
0.159154943091895335768883763373 | Div(1, Mul(2, Pi)) [541e2e 47acde d1a0ec] Im(Div(ConstI, Mul(2, Pi))) [1c25d3 82b410] | 5 (#188) |
4.93480220054467930941724549994 | Div(Pow(Pi, 2), 2) [868061 47acde 1165fc 595f46] Mul(3, RiemannZeta(2)) [a5e52e] HurwitzZeta(2, Div(1, 2)) [868061] DigammaFunction(Div(1, 2), 1) [595f46] 4 of 5 expressions shown | 5 (#189) |
6.92820323027550917410978536602 | Sqrt(48) [9d5b81] Mul(4, Sqrt(3)) [921d61 bb88c8 44d300 b95ffa] | 5 (#190) |
3.29583686600432907418573571077 | Log(27) [d496b8] Mul(3, Log(3)) [45a969 98f642 177de7 967bbb] | 5 (#191) |
1.01734306198444913971451792979 | RiemannZeta(6) [9923b7 7cb17f e93ca8 3a5167 ef2c71] Mul(Div(1, 945), Pow(Pi, 6)) [7cb17f] | 5 (#192) |
1.11803398874989484820458683437 | Div(Sqrt(5), 2) [d0d91a ae9d30 223ce1] Abs(Add(1, Div(ConstI, 2))) [583bf9 324483] Sum(Div(1, Add(Fibonacci(Add(Mul(2, n), 1)), 1)), For(n, 0, Infinity)) [ae9d30] | 5 (#193) |
0.463647609000806116214256231461 | Atan(Div(1, 2)) [b1357b 5278da cbf396] Arg(Add(1, Div(ConstI, 2))) [583bf9 324483] | 5 (#194) |
0.833333333333333333333333333333 | Div(5, 6) [921d61 967bbb 4d1f6b 6ae250 edad97] | 5 (#195) |
17.1973291545071107392713191193 | HurwitzZeta(2, Div(1, 4)) [e85723 3e82c3] DigammaFunction(Div(1, 4), 1) [8ee7c9 2744d4 807c7d] Add(Pow(Pi, 2), Mul(8, ConstCatalan)) [3e82c3 807c7d] | 5 (#196) |
4.50000000000000000000000000000 | Div(9, 2) [826257 588889 f78fa0 dbdf08 856317] | 5 (#197) |
1.33333333333333333333333333333 | Div(4, 3) [bd319e ef2c71 01bbb6 e3e4c5 dabb47] | 5 (#198) |
0.261799387799149436538553615273 | Div(Pi, 12) [7dd050] Atan(Sub(2, Sqrt(3))) [7dd050] Im(Div(Mul(ConstI, Pi), 12)) [175b7a 0abbe1 871996] Im(Div(Mul(Pi, ConstI), 12)) [1bae52] 4 of 16 expressions shown | 5 (#201) |
3.41421356237309504880168872421 | Add(2, Sqrt(2)) [8c368f e30d7e 2991b5 361801] Add(Sqrt(2), 2) [cf3c8e] | 5 (#202) |
7.08981540362206410919266993336 | Mul(4, Sqrt(Pi)) [9b0385 cf5caa cc22bf 6c4567 3c4979] | 5 (#203) |
28.3592616144882564367706797335 | Mul(16, Sqrt(Pi)) [060366 e30d7e 7f8a58 c05ed8 2991b5] | 5 (#204) |
16.9705627484771405856202646905 | Mul(12, Sqrt(2)) [c60033 e30d7e 4877f2 e2bc80 35c85f] | 5 (#206) |
0.481211825059603447497758913424 | Log(GoldenRatio) [12b336 bceed4 c9d117 c4d78a fd732d] Re(Add(Log(GoldenRatio), Mul(Mul(Div(1, 2), Pi), ConstI))) [c4d78a] | 5 (#216) |
1.12837916709551257389615890312 | Div(2, Sqrt(Pi)) [fae9d3 b5bd5d 2aaba8 36ef64 622772] | 5 (#223) |
0.738413072969749655693453740187 | Pow(2, Neg(Div(7, 16))) [3fb309 8c4ab4 2f3ed3 6cbce8 dd5f43] | 5 (#224) |
0.437500000000000000000000000000 | Div(7, 16) [3fb309 8c4ab4 2f3ed3 6cbce8 dd5f43] Neg(Neg(Div(7, 16))) [3fb309 8c4ab4 2f3ed3 6cbce8 dd5f43] | 5 (#225) |
2.64575131106459059050161575364 | Sqrt(7) [7cc3d3 29c095 72f583 9d5b81] Im(Mul(Sqrt(7), ConstI)) [29c095] Im(Add(1, Mul(Sqrt(7), ConstI))) [29c095] | 4 (#226) |
1.46163214496836234126265954233 | DigammaFunctionZero(0) [3c4f5f 4fdf65 950e5a] Decimal("1.46163214496836234126265954233") [1bbbc7] | 4 (#227) |
1.78107241799019798523650410311 | Exp(ConstGamma) [86fcf1 3142ec 433a5c 288da1] SequenceLimit(Mul(Div(1, Log(PrimeNumber(N))), Product(Div(PrimeNumber(n), Sub(PrimeNumber(n), 1)), For(n, 1, N))), For(N, Infinity)) [288da1] | 4 (#228) |
0.200000000000000000000000000000 | Div(1, 5) [5278da f8d280 e9a269] Decimal("0.2") [799894] | 4 (#229) |
1.17809724509617246442349126873 | Div(Mul(3, Pi), 8) [be0f54 4d2c10 397051 c6c92a] Atan(Add(Sqrt(2), 1)) [c6c92a] Integral(Pow(Sinc(x), 3), For(x, 0, Infinity)) [be0f54] | 4 (#232) |
961.389193575304437030219443652 | Pow(Pi, 6) [0fda1b 53fcdd 4a1b00 7cb17f] | 4 (#234) |
11.1366559936634156905696359642 | Mul(2, Pow(Pi, Div(3, 2))) [9b0385 e3896e] Abs(Mul(Mul(Sqrt(2), Sub(1, ConstI)), Pow(Pi, Div(3, 2)))) [5174ea] Abs(Mul(Mul(Sqrt(2), Add(1, ConstI)), Pow(Pi, Div(3, 2)))) [69d0a3] | 4 (#235) |
0.599070117367796103719961246140 | Im(EllipticE(2)) [5d2c01] Re(EllipticE(2)) [5d2c01] Im(AGM(1, ConstI)) [69d0a3] Re(AGM(1, ConstI)) [69d0a3] 4 of 15 expressions shown | 4 (#236) |
0.927037338650685959216925173598 | CarlsonRF(0, 2, 4) [4c1988] Div(Pow(Gamma(Div(1, 4)), 2), Mul(8, Sqrt(Pi))) [2573ba 3b272e 9f3474 4c1988] | 4 (#237) |
0.423606542396989543303249561741 | Abs(CarlsonRG(0, 1, -1)) [9e30e7] Div(Pow(Pi, Div(3, 2)), Pow(Gamma(Div(1, 4)), 2)) [2573ba 3b272e 9f3474] Abs(Mul(Div(Mul(Sqrt(2), Pow(Pi, Div(3, 2))), Mul(2, Pow(Gamma(Div(1, 4)), 2))), Add(1, ConstI))) [9e30e7] | 4 (#238) |
19.2259694525956936913847828534 | Pow(Gamma(Div(1, 3)), 3) [40a376 175b7a 0abbe1 b95ffa] | 4 (#239) |
20.0530261970480040193261222785 | Mul(8, Sqrt(Mul(2, Pi))) [62b0c4 3f1547 84f403 2dcf0c] | 4 (#240) |
0.299535058683898051859980623070 | Re(CarlsonRG(0, 1, -1)) [9e30e7] Im(CarlsonRG(0, 1, -1)) [9e30e7] Div(Pow(Pi, Div(3, 2)), Mul(Sqrt(2), Pow(Gamma(Div(1, 4)), 2))) [3f1547 84f403] Div(Mul(Sqrt(2), Pow(Pi, Div(3, 2))), Mul(2, Pow(Gamma(Div(1, 4)), 2))) [7c50d1 9e30e7] 4 of 6 expressions shown | 4 (#241) |
1.06793798966739570226868782321 | CarlsonRD(0, 1, 2) [060366] CarlsonRJ(0, 1, 2, 2) [c05ed8] Re(CarlsonRD(0, -1, 1)) [2dcf0c] Re(CarlsonRJ(0, -1, 1, 1)) [62b0c4] 4 of 6 expressions shown | 4 (#242) |
1.96654316571908985784862969242 | Div(Mul(3, Pow(Gamma(Div(1, 4)), 2)), Mul(8, Sqrt(Mul(2, Pi)))) [62b0c4 2dcf0c] Div(Mul(Mul(3, Sqrt(2)), Pow(Gamma(Div(1, 4)), 2)), Mul(16, Sqrt(Pi))) [c05ed8 060366] Re(Mul(Div(Mul(3, Pow(Gamma(Div(1, 4)), 2)), Mul(8, Sqrt(Mul(2, Pi)))), Sub(1, ConstI))) [62b0c4 2dcf0c] Neg(Im(Mul(Div(Mul(3, Pow(Gamma(Div(1, 4)), 2)), Mul(8, Sqrt(Mul(2, Pi)))), Sub(1, ConstI)))) [62b0c4 2dcf0c] | 4 (#243) |
0.898605176051694155579941869210 | Div(Mul(Mul(3, Sqrt(2)), Pow(Pi, Div(3, 2))), Mul(2, Pow(Gamma(Div(1, 4)), 2))) [62b0c4 c05ed8 060366 2dcf0c] Re(Mul(Div(Mul(Mul(3, Sqrt(2)), Pow(Pi, Div(3, 2))), Mul(2, Pow(Gamma(Div(1, 4)), 2))), Add(1, ConstI))) [62b0c4 2dcf0c] Im(Mul(Div(Mul(Mul(3, Sqrt(2)), Pow(Pi, Div(3, 2))), Mul(2, Pow(Gamma(Div(1, 4)), 2))), Add(1, ConstI))) [62b0c4 2dcf0c] | 4 (#244) |
39.4351416197906232385684101588 | Mul(3, Pow(Gamma(Div(1, 4)), 2)) [7f8a58 1eaaed 2dcf0c 62b0c4] | 4 (#245) |
0.565162139789654229908969879624 | Neg(Im(CarlsonRD(1, 1, -1))) [545e8b] Neg(Re(CarlsonRJ(1, 1, 1, -1))) [e04867] Neg(Im(CarlsonRJ(1, 1, -1, -1))) [534335] Neg(Re(CarlsonRJ(1, -1, -1, 1))) [4c1db8] 4 of 8 expressions shown | 4 (#246) |
1.66608110180938734263095537127 | Neg(Re(CarlsonRD(1, 1, -1))) [545e8b] Neg(Im(CarlsonRJ(1, 1, 1, -1))) [e04867] Neg(Im(CarlsonRJ(1, -1, -1, 1))) [4c1db8] Neg(Re(CarlsonRJ(1, 1, -1, -1))) [534335] 4 of 9 expressions shown | 4 (#247) |
1.75932784950901143303710761145 | Abs(CarlsonRD(1, 1, -1)) [545e8b] Abs(CarlsonRJ(1, 1, 1, -1)) [e04867] Abs(CarlsonRJ(1, 1, -1, -1)) [534335] Abs(CarlsonRJ(1, -1, -1, 1)) [4c1db8] 4 of 6 expressions shown | 4 (#248) |
0.934837860210345770091030120376 | Div(Mul(Mul(3, Sqrt(2)), Log(Add(1, Sqrt(2)))), 4) [4c1db8 534335 545e8b e04867] | 4 (#249) |
0.894427190999915878563669467493 | Div(2, Sqrt(5)) [d0d91a 223ce1 fd732d c4d78a] | 4 (#257) |
0.0416666666666666666666666666667 | Div(1, 24) [c60033 fb7a63 8b7991 afd27a] | 4 (#262) |
2.83787706640934548356065947281 | Add(Log(Mul(2, Pi)), 1) [af31ae a5d65f 5babc2 64bd32] | 4 (#264) |
8.53973422267356706546355086955 | Mul(Pi, ConstE) [f4e249 3a1316 a71381 69ca86] | 4 (#265) |
0.790569415042094832999723386108 | Abs(Add(Div(1, 4), Mul(Div(3, 4), ConstI))) [c4febd 80f43a 0ce854 fa8e96] | 4 (#266) |
1.24904577239825442582991707728 | Arg(Add(Div(1, 4), Mul(Div(3, 4), ConstI))) [c4febd 80f43a 0ce854 fa8e96] | 4 (#267) |
0.820738150149675393478850951243 | Abs(Add(Div(1, 3), Mul(Div(3, 4), ConstI))) [9b868d c2c002 d3b45d e2035a] | 4 (#268) |
1.15257199721566751804014986261 | Arg(Add(Div(1, 3), Mul(Div(3, 4), ConstI))) [9b868d c2c002 d3b45d e2035a] | 4 (#269) |
0.840896415253714543031125476233 | Pow(2, Neg(Div(1, 4))) [4c8873 7f9273 7d7c65 95e9e4] | 4 (#270) |
2.73205080756887729352744634151 | Add(Sqrt(3), 1) [f12e20 8356db 675f23] Add(1, Sqrt(3)) [5384f3] Neg(Sub(-1, Sqrt(3))) [675f23] | 4 (#271) |
1.50980364847710499960519835468 | Pow(3, Div(3, 8)) [669765 5384f3 f12e20 9ce413] | 4 (#272) |
2.27950705695477764199356325196 | Pow(3, Div(3, 4)) [669765 62ffb3 675f23] Pow(Parentheses(27), Div(1, 4)) [5384f3] | 4 (#273) |
0.607927101854026628663276779258 | Div(6, Pow(Pi, 2)) [0477b3 3bf702 3b43b0 f88596] SequenceLimit(Div(Sum(Cardinality(DirichletGroup(q)), For(q, 1, N)), Mul(Div(1, 2), Pow(N, 2))), For(N, Infinity)) [f88596] SequenceLimit(Div(Sum(Cardinality(PrimitiveDirichletCharacters(q)), For(q, 1, N)), Sum(Cardinality(DirichletGroup(q)), For(q, 1, N))), For(N, Infinity)) [3b43b0] | 4 (#274) |
1.64791843300216453709286785538 | Div(Mul(3, Log(3)), 2) [45a969 98f642 177de7 967bbb] | 4 (#275) |
0.418938533204672741780329736406 | Div(Sub(Log(Mul(2, Pi)), 1), 2) [dbfd5b 0ad263 a54fb0] ComplexDerivative(BarnesG(z), For(z, 1)) [dbfd5b] Mul(Div(1, 2), Sub(Log(Mul(2, Pi)), 1)) [f50c74] | 4 (#276) |
0.837877066409345483560659472811 | Sub(Log(Mul(2, Pi)), 1) [dbfd5b 0ad263 f50c74 a54fb0] | 4 (#277) |
4.71238898038468985769396507492 | Div(Mul(3, Pi), 2) [56667c 47acde bf8f37] | 3 (#278) |
0.628318530717958647692528676656 | Div(Pi, 5) [98a765 47acde] Im(Div(Mul(Pi, ConstI), 5)) [7a56c2] Arg(Exp(Div(Mul(Pi, ConstI), 5))) [7a56c2] Neg(Arg(Neg(Exp(Div(Mul(Mul(4, Pi), ConstI), 5))))) [7a56c2] 4 of 5 expressions shown | 3 (#279) |
2.44948974278317809819728407471 | Sqrt(6) [c60033 9d5b81 799b5e] Im(Mul(Sqrt(6), ConstI)) [c60033 799b5e] | 3 (#280) |
3.31662479035539984911493273667 | Sqrt(11) [9d5b81 a498dd] Im(Mul(Sqrt(11), ConstI)) [a498dd] Im(Add(1, Mul(Sqrt(11), ConstI))) [a498dd] Abs(Mul(Div(1, 2), Add(1, Mul(Sqrt(43), ConstI)))) [5b108e] 4 of 5 expressions shown | 3 (#281) |
4.12310562561766054982140985597 | Sqrt(17) [9d5b81] Abs(Add(1, Mul(4, ConstI))) [6cbce8] Abs(Mul(Div(1, 2), Add(1, Mul(Sqrt(67), ConstI)))) [951017] | 3 (#282) |
4.47213595499957939281834733746 | Sqrt(20) [9d5b81] Mul(2, Sqrt(5)) [cb6c9c] Abs(Add(1, Mul(Sqrt(19), ConstI))) [3ee358] | 3 (#283) |
5.19615242270663188058233902452 | Sqrt(27) [d83109 9d5b81] Mul(3, Sqrt(3)) [340936] | 3 (#284) |
5.65685424949238019520675489684 | Sqrt(32) [9d5b81] Mul(4, Sqrt(2)) [54c80d] Pow(2, Div(5, 2)) [3b175b] | 3 (#285) |
2.07944154167983592825169636437 | Log(8) [d496b8] Mul(3, Log(2)) [7ec4f0 f93bae] | 3 (#286) |
2.77258872223978123766892848583 | Log(16) [d496b8] Mul(4, Log(2)) [8c368f e4cdf1] | 3 (#287) |
1.03692775514336992633136548646 | RiemannZeta(5) [a5e52e 856317 e93ca8] | 3 (#288) |
14.1347251417346937904572519836 | Im(RiemannZetaZero(1)) [71d9d9 945fa5] Im(RiemannZetaZero(Pow(10, 0))) [2e1cc7] Decimal("14.134725141734693790457251983562470270784257115699") [71d9d9 945fa5 2e1cc7] | 3 (#289) |
0.0230957089661210338143102479065 | KeiperLiLambda(1) [d8d820 faf448] KeiperLiLambda(Pow(10, 0)) [706f66] Sub(Add(Div(ConstGamma, 2), 1), Div(Log(Mul(4, Pi)), 2)) [d8d820] Decimal("0.023095708966121033814310247906495291621932127152051") [706f66 faf448] | 3 (#290) |
0.0728158454836767248605863758749 | Neg(StieltjesGamma(1)) [e5bd3c 70a705] Neg(StieltjesGamma(Pow(10, 0))) [569d5c] Neg(Decimal("-0.072815845483676724860586375874901319137736338334338")) [e5bd3c 569d5c] | 3 (#291) |
0.800000000000000000000000000000 | Div(4, 5) [adf83a] Decimal("0.8") [855201] Neg(Decimal("-0.8")) [3009a8] Neg(Re(Add(Decimal("-0.8"), Mul(Decimal("0.7"), ConstI)))) [3009a8] | 3 (#292) |
8.41439832211715999779816713058 | Mul(7, RiemannZeta(3)) [4a5b9a 9417f4 d6703a] HurwitzZeta(3, Div(1, 2)) [9417f4] | 3 (#293) |
2.54187964767160649839766288042 | HurwitzZeta(2, Div(3, 4)) [951f86 e85723] DigammaFunction(Div(3, 4), 1) [d2f9fb] Sub(Pow(Pi, 2), Mul(8, ConstCatalan)) [d2f9fb 951f86] | 3 (#294) |
0.309016994374947424102293417183 | Sin(Div(Pi, 10)) [fad16f] Div(1, Mul(2, GoldenRatio)) [030560] Re(Exp(Div(Mul(Mul(2, Pi), ConstI), 5))) [7a56c2] Re(Neg(Exp(Div(Mul(Mul(3, Pi), ConstI), 5)))) [7a56c2] 4 of 6 expressions shown | 3 (#295) |
3.23606797749978969640917366873 | Add(1, Sqrt(5)) [77d2f8] Mul(2, GoldenRatio) [42d727 030560] | 3 (#296) |
0.321750554396642193401404614359 | Atan(Div(1, 3)) [7ce79e 0644b6 cbf396] | 3 (#297) |
0.567588218416655691251406468410 | Mul(4, Atan(Div(1, 7))) [b1357b 7ce79e 0644b6] | 3 (#298) |
0.141897054604163922812851617103 | Atan(Div(1, 7)) [b1357b 7ce79e 0644b6] | 3 (#299) |
0.142857142857142857142857142857 | Div(1, 7) [b1357b 7ce79e 0644b6] | 3 (#300) |
1.76274717403908605046521864996 | Mul(2, Log(Add(1, Sqrt(2)))) [54c80d] Log(Add(3, Mul(2, Sqrt(2)))) [fe4967] Sub(Log(Add(2, Sqrt(2))), Log(Sub(2, Sqrt(2)))) [8c368f] Integral(Mul(JacobiTheta(2, 0, Mul(ConstI, t)), JacobiTheta(4, 0, Mul(ConstI, t))), For(t, 0, Infinity)) [fe4967] | 3 (#302) |
1.35411793942640041694528802815 | Gamma(Div(2, 3)) [2371b9 9a8d4d 693cfe] | 3 (#303) |
1.19814023473559220743992249228 | AGM(1, Sqrt(2)) [0d9352 7b362f dabb47] Div(1, Pow(JacobiTheta(4, 0, ConstI), 2)) [7b362f] Div(Mul(2, Sqrt(2), Pow(Pi, Div(3, 2))), Pow(Gamma(Div(1, 4)), 2)) [0d9352] | 3 (#304) |
0.809016994374947424102293417183 | Cos(Div(Pi, 5)) [98a765] Sin(Div(Mul(3, Pi), 10)) [487e35] Re(Exp(Div(Mul(Pi, ConstI), 5))) [7a56c2] Neg(Re(Neg(Exp(Div(Mul(Pi, ConstI), 5))))) [7a56c2] 4 of 6 expressions shown | 3 (#305) |
2.17758609030360213050068889824 | Mul(Pi, Log(2)) [dad27b 5c9675 997777] Integral(Div(1, Pow(Sinc(x), 2)), For(x, 0, Div(Pi, 2))) [dad27b] | 3 (#306) |
0.392699081698724154807830422910 | Div(Pi, 8) [7783f9 a9ecff 0bd544] Atan(Sub(Sqrt(2), 1)) [a9ecff] | 3 (#307) |
5.82842712474619009760337744842 | Add(3, Sqrt(8)) [e37535] Add(3, Mul(2, Sqrt(2))) [361801 fe4967] | 3 (#308) |
1.35064388104767550252017473534 | EllipticE(Div(1, 2)) [3b272e] Add(Div(Pow(Gamma(Div(1, 4)), 2), Mul(8, Sqrt(Pi))), Div(Pow(Pi, Div(3, 2)), Pow(Gamma(Div(1, 4)), 2))) [2573ba 3b272e 9f3474] | 3 (#309) |
1.54368663391782125453009350113 | EllipticK(Sub(Mul(4, Sqrt(3)), 7)) [b95ffa] Re(EllipticK(Div(Add(1, Mul(Sqrt(3), ConstI)), 2))) [0abbe1] Re(EllipticK(Div(Sub(1, Mul(Sqrt(3), ConstI)), 2))) [175b7a] Div(Mul(Sqrt(Add(3, Mul(2, Sqrt(3)))), Pow(Gamma(Div(1, 3)), 3)), Mul(Pow(2, Div(10, 3)), Pi)) [b95ffa] 4 of 6 expressions shown | 3 (#310) |
1.59814200211254014446096510539 | EllipticK(Sub(Div(1, 2), Div(Sqrt(3), 4))) [40a376] Abs(EllipticK(Div(Sub(1, Mul(Sqrt(3), ConstI)), 2))) [175b7a] Abs(EllipticK(Div(Add(1, Mul(Sqrt(3), ConstI)), 2))) [0abbe1] Div(Mul(Pow(3, Div(1, 4)), Pow(Gamma(Div(1, 3)), 3)), Mul(Mul(4, Pow(2, Div(1, 3))), Pi)) [40a376] 4 of 6 expressions shown | 3 (#311) |
25.3027987703796493658818642560 | Mul(Pow(3, Div(1, 4)), Pow(Gamma(Div(1, 3)), 3)) [40a376] Abs(Mul(Mul(Exp(Div(Mul(ConstI, Pi), 12)), Pow(3, Div(1, 4))), Pow(Gamma(Div(1, 3)), 3))) [0abbe1] Abs(Mul(Mul(Exp(Neg(Div(Mul(ConstI, Pi), 12))), Pow(3, Div(1, 4))), Pow(Gamma(Div(1, 3)), 3))) [175b7a] | 3 (#312) |
1.31607401295249246081921890180 | Pow(3, Div(1, 4)) [40a376 175b7a 0abbe1] Abs(Mul(Exp(Div(Mul(ConstI, Pi), 12)), Pow(3, Div(1, 4)))) [0abbe1] Abs(Mul(Exp(Neg(Div(Mul(ConstI, Pi), 12))), Pow(3, Div(1, 4)))) [175b7a] | 3 (#313) |
0.965925826289068286749743199729 | Re(Exp(Div(Mul(Pi, ConstI), 12))) [1bae52] Re(Exp(Div(Mul(ConstI, Pi), 12))) [0abbe1] Re(Exp(Neg(Div(Mul(ConstI, Pi), 12)))) [175b7a] | 3 (#314) |
0.258819045102520762348898837624 | Im(Exp(Div(Mul(ConstI, Pi), 12))) [0abbe1] Im(Exp(Div(Mul(Pi, ConstI), 12))) [1bae52] Neg(Im(Exp(Neg(Div(Mul(ConstI, Pi), 12))))) [175b7a] | 3 (#315) |
15.8326348578114914920971129591 | Mul(Pow(2, Div(7, 3)), Pi) [175b7a 0abbe1] Mul(Mul(4, Pow(2, Div(1, 3))), Pi) [40a376] | 3 (#316) |
5.03968419957949265906884242911 | Pow(2, Div(7, 3)) [175b7a 0abbe1] Mul(4, Pow(2, Div(1, 3))) [40a376] | 3 (#317) |
2.33333333333333333333333333333 | Div(7, 3) [588889 175b7a 0abbe1] | 3 (#318) |
18.5899040376038676905176986042 | Mul(Sqrt(2), Pow(Gamma(Div(1, 4)), 2)) [8b4be6 84f403 3f1547] | 3 (#319) |
0.300000000000000000000000000000 | Div(3, 10) [230a49 588889 a4e47f] Neg(Neg(Div(3, 10))) [230a49 a4e47f] | 3 (#320) |
1.24645048028046102678804016050 | Mul(Sqrt(2), Log(Add(1, Sqrt(2)))) [7ea1ad 25435b] Div(Sub(Log(Add(2, Sqrt(2))), Log(Sub(2, Sqrt(2)))), Sqrt(2)) [8c368f] | 3 (#321) |
172.792266063660291102451159996 | Pow(Gamma(Div(1, 4)), 4) [67e015 ae6718 8519dd] Neg(Neg(Pow(Gamma(Div(1, 4)), 4))) [8519dd] | 3 (#322) |
0.643805509807655071153017462540 | CarlsonRD(2, 2, 1) [eda57d] CarlsonRJ(1, 2, 2, 1) [a1414f] CarlsonRJ(1, 1, 1, 2) [b1c84e] Sub(3, Div(Mul(3, Pi), 4)) [b1c84e eda57d a1414f] | 3 (#323) |
2.78111201595205787765077552079 | CarlsonRJ(0, ConstI, Neg(ConstI), 1) [1eaaed] Re(CarlsonRJ(0, ConstI, Neg(ConstI), 1)) [1eaaed] Div(Mul(3, Pow(Gamma(Div(1, 4)), 2)), Mul(8, Sqrt(Pi))) [1eaaed] Abs(Mul(Div(Mul(3, Pow(Gamma(Div(1, 4)), 2)), Mul(8, Sqrt(Mul(2, Pi)))), Sub(1, ConstI))) [62b0c4 2dcf0c] | 3 (#324) |
0.962423650119206894995517826849 | Mul(2, Log(GoldenRatio)) [c9d117] Neg(Log(Div(Sub(3, Sqrt(5)), 2))) [22b67a da1873] | 3 (#336) |
1.25000000000000000000000000000 | Div(5, 4) [669765 3b175b 675f23] | 3 (#337) |
0.355028053887817239260063186004 | AiryAi(0) [01bbb6 20e530 693cfe] Div(1, Mul(Pow(3, Div(2, 3)), Gamma(Div(2, 3)))) [693cfe] | 3 (#420) |
0.258819403792806798405183560189 | Neg(AiryAi(0, 1)) [807917 20e530 01bbb6] Div(1, Mul(Pow(3, Div(1, 3)), Gamma(Div(1, 3)))) [807917] Neg(Neg(Div(1, Mul(Pow(3, Div(1, 3)), Gamma(Div(1, 3)))))) [807917] | 3 (#421) |
0.614926627446000735150922369094 | AiryBi(0) [4d65e5 bd319e 9a8d4d] Div(1, Mul(Pow(3, Div(1, 6)), Gamma(Div(2, 3)))) [9a8d4d] | 3 (#422) |
0.448288357353826357914823710399 | AiryBi(0, 1) [fba07c bd319e 4d65e5] Div(Pow(3, Div(1, 6)), Gamma(Div(1, 3))) [fba07c] | 3 (#423) |
1.66666666666666666666666666667 | Div(5, 3) [4d65e5 20e530 588889] | 3 (#424) |
1.33133536380038971279753491795 | Pow(Pi, Div(1, 4)) [dc507f d15f11 8b7991] | 3 (#426) |
0.999993025315287582009312256391 | JacobiTheta(3, 0, Add(1, Mul(4, ConstI))) [6cbce8] Mul(Brackets(Mul(Pow(2, Neg(Div(7, 16))), Pow(Add(Sqrt(2), 1), Div(1, 4)))), JacobiTheta(3, 0, ConstI)) [6cbce8 3fb309 8c4ab4] | 3 (#427) |
0.920435368044324696354816069490 | Mul(Pow(2, Neg(Div(7, 16))), Pow(Add(Sqrt(2), 1), Div(1, 4))) [6cbce8 3fb309 8c4ab4] | 3 (#428) |
62.0125533605996403509526301342 | Mul(2, Pow(Pi, 3)) [03aca0 e83059 8a9884] Neg(Neg(Mul(2, Pow(Pi, 3)))) [03aca0] | 3 (#429) |
0.0625000000000000000000000000000 | Div(1, 16) [033d39 e85723 0701dc] | 3 (#430) |
0.130899693899574718269276807637 | Im(Div(Mul(Pi, ConstI), 24)) [204acd a1a3d4] Arg(Exp(Div(Mul(Pi, ConstI), 24))) [a1a3d4] Neg(Im(Neg(Div(Mul(Pi, ConstI), 24)))) [204acd] Neg(Arg(Exp(Neg(Div(Mul(Pi, ConstI), 24))))) [204acd] 4 of 6 expressions shown | 3 (#431) |
1.25663706143591729538505735331 | Div(Mul(2, Pi), 5) [47acde] Im(Div(Mul(Mul(2, Pi), ConstI), 5)) [7a56c2] Arg(Exp(Div(Mul(Mul(2, Pi), ConstI), 5))) [7a56c2] Neg(Arg(Neg(Exp(Div(Mul(Mul(3, Pi), ConstI), 5))))) [7a56c2] 4 of 5 expressions shown | 2 (#432) |
1.88495559215387594307758602997 | Div(Mul(3, Pi), 5) [47acde] Im(Div(Mul(Mul(3, Pi), ConstI), 5)) [7a56c2] Arg(Exp(Div(Mul(Mul(3, Pi), ConstI), 5))) [7a56c2] Neg(Arg(Neg(Exp(Div(Mul(Mul(2, Pi), ConstI), 5))))) [7a56c2] 4 of 5 expressions shown | 2 (#433) |
2.51327412287183459077011470662 | Div(Mul(4, Pi), 5) [47acde] Im(Div(Mul(Mul(4, Pi), ConstI), 5)) [7a56c2] Arg(Exp(Div(Mul(Mul(4, Pi), ConstI), 5))) [7a56c2] Neg(Arg(Neg(Exp(Div(Mul(Pi, ConstI), 5))))) [7a56c2] 4 of 5 expressions shown | 2 (#434) |
2.46740110027233965470862274997 | Div(Pow(Pi, 2), 4) [47acde] Pow(Div(Pi, 2), 2) [efebb8] | 2 (#435) |
0.398942280401432677939946059934 | Div(1, Sqrt(Mul(2, Pi))) [47acde d3baaf] | 2 (#436) |
23.1406926327792690057290863679 | Exp(Pi) [042551 47acde] Where(Mul(32, Product(Pow(Div(a_(Add(n, 1)), a_(n)), Pow(2, Sub(1, n))), For(n, 0, Infinity))), Def(Tuple(a_(n), b_(n)), AGMSequence(n, 1, Div(1, Sqrt(2))))) [042551] | 2 (#437) |
0.207879576350761908546955619835 | Pow(ConstI, ConstI) [a39534] Exp(Neg(Div(Pi, 2))) [47acde a39534] | 2 (#438) |
3.16227766016837933199889354443 | Sqrt(10) [6ae250 9d5b81] | 2 (#439) |
3.60555127546398929311922126747 | Sqrt(13) [9d5b81] Abs(Add(2, Mul(3, ConstI))) [0e2bcb] | 2 (#440) |
4.35889894354067355223698198386 | Sqrt(19) [3ee358 9d5b81] Im(Mul(Sqrt(19), ConstI)) [3ee358] Im(Add(1, Mul(Sqrt(19), ConstI))) [3ee358] | 2 (#441) |
6.08276253029821968899968424520 | Sqrt(37) [9d5b81] Abs(Add(1, Mul(6, ConstI))) [5384f3] | 2 (#442) |
6.40312423743284868648821767462 | Sqrt(41) [9d5b81] Abs(Mul(Div(1, 2), Add(1, Mul(Sqrt(163), ConstI)))) [1cb24e] | 2 (#443) |
6.55743852430200065234410999764 | Sqrt(43) [9d5b81 5b108e] Im(Mul(Sqrt(43), ConstI)) [5b108e] Im(Add(1, Mul(Sqrt(43), ConstI))) [5b108e] | 2 (#444) |
6.63324958071079969822986547334 | Sqrt(44) [9d5b81] Abs(Add(1, Mul(Sqrt(43), ConstI))) [5b108e] | 2 (#445) |
1.00407735619794433937868523851 | RiemannZeta(8) [e93ca8 7cb17f] Mul(Div(1, 9450), Pow(Pi, 8)) [7cb17f] | 2 (#448) |
1.00099457512781808533714595890 | RiemannZeta(10) [e93ca8 7cb17f] Mul(Div(1, 93555), Pow(Pi, 10)) [7cb17f] | 2 (#449) |
1.00024608655330804829863799805 | RiemannZeta(12) [e93ca8 7cb17f] Mul(Div(691, 638512875), Pow(Pi, 12)) [7cb17f] | 2 (#450) |
1.00006124813505870482925854511 | RiemannZeta(14) [e93ca8 7cb17f] Mul(Div(2, 18243225), Pow(Pi, 14)) [7cb17f] | 2 (#451) |
1.00001528225940865187173257149 | RiemannZeta(16) [e93ca8 7cb17f] Mul(Div(3617, 325641566250), Pow(Pi, 16)) [7cb17f] | 2 (#452) |
1.00000381729326499983985646164 | RiemannZeta(18) [e93ca8 7cb17f] Mul(Div(43867, 38979295480125), Pow(Pi, 18)) [7cb17f] | 2 (#453) |
1.00000095396203387279611315204 | RiemannZeta(20) [e93ca8 7cb17f] Mul(Div(174611, 1531329465290625), Pow(Pi, 20)) [7cb17f] | 2 (#454) |
1.00000023845050272773299000365 | RiemannZeta(22) [e93ca8 7cb17f] Mul(Div(155366, 13447856940643125), Pow(Pi, 22)) [7cb17f] | 2 (#455) |
1.00000005960818905125947961244 | RiemannZeta(24) [e93ca8 7cb17f] Mul(Div(236364091, 201919571963756521875), Pow(Pi, 24)) [7cb17f] | 2 (#456) |
1.00000001490155482836504123466 | RiemannZeta(26) [e93ca8 7cb17f] Mul(Div(1315862, 11094481976030578125), Pow(Pi, 26)) [7cb17f] | 2 (#457) |
1.00000000372533402478845705482 | RiemannZeta(28) [e93ca8 7cb17f] Mul(Div(6785560294, 564653660170076273671875), Pow(Pi, 28)) [7cb17f] | 2 (#458) |
1.00000000093132743241966818287 | RiemannZeta(30) [e93ca8 7cb17f] Mul(Div(6892673020804, 5660878804669082674070015625), Pow(Pi, 30)) [7cb17f] | 2 (#459) |
1.00000000023283118336765054920 | RiemannZeta(32) [e93ca8 7cb17f] Mul(Div(7709321041217, 62490220571022341207266406250), Pow(Pi, 32)) [7cb17f] | 2 (#460) |
1.00000000005820772087902700889 | RiemannZeta(34) [e93ca8 7cb17f] Mul(Div(151628697551, 12130454581433748587292890625), Pow(Pi, 34)) [7cb17f] | 2 (#461) |
1.00000000001455192189104198424 | RiemannZeta(36) [e93ca8 7cb17f] Mul(Div(26315271553053477373, 20777977561866588586487628662044921875), Pow(Pi, 36)) [7cb17f] | 2 (#462) |
1.00000000000363797954737865119 | RiemannZeta(38) [e93ca8 7cb17f] Mul(Div(308420411983322, 2403467618492375776343276883984375), Pow(Pi, 38)) [7cb17f] | 2 (#463) |
1.00000000000090949478402638893 | RiemannZeta(40) [e93ca8 7cb17f] Mul(Div(261082718496449122051, 20080431172289638826798401128390556640625), Pow(Pi, 40)) [7cb17f] | 2 (#464) |
49.7738324776723021819167846786 | Im(RiemannZetaZero(10)) [71d9d9] Im(RiemannZetaZero(Pow(10, 1))) [2e1cc7] Decimal("49.773832477672302181916784678563724057723178299677") [71d9d9 2e1cc7] | 2 (#465) |
21.0220396387715549926284795939 | Im(RiemannZetaZero(2)) [c0ae99 71d9d9] Decimal("21.022039638771554992628479593896902777334340524903") [c0ae99 71d9d9] | 2 (#466) |
0.227933936319315774369303405737 | KeiperLiLambda(10) [faf448] KeiperLiLambda(Pow(10, 1)) [706f66] Decimal("0.22793393631931577436930340573684453380748385942738") [706f66 faf448] | 2 (#467) |
0.000205332814909064794683722289237 | StieltjesGamma(10) [e5bd3c] StieltjesGamma(Pow(10, 1)) [569d5c] Decimal("0.00020533281490906479468372228923706530295985377416676") [e5bd3c 569d5c] | 2 (#468) |
0.0333333333333333333333333333333 | Div(1, 30) [588889 aed6bd] Neg(BernoulliB(8)) [aed6bd] Neg(BernoulliB(4)) [aed6bd] Neg(Neg(Div(1, 30))) [aed6bd] 4 of 5 expressions shown | 2 (#469) |
0.0238095238095238095238095238095 | Div(1, 42) [588889 aed6bd] BernoulliB(6) [aed6bd] | 2 (#470) |
0.0757575757575757575757575757576 | Div(5, 66) [588889 aed6bd] BernoulliB(10) [aed6bd] | 2 (#471) |
1.16666666666666666666666666667 | Div(7, 6) [588889 aed6bd] BernoulliB(14) [aed6bd] | 2 (#472) |
9.28902549192081891875544943595 | Div(1, HalphenConstant) [f5e0b0 6161c7] | 2 (#475) |
0.644934066848226436472415166646 | HurwitzZeta(2, 2) [ac8d3c] DigammaFunction(2, 1) [fa0292] Sub(Div(Pow(Pi, 2), 6), 1) [fa0292 ac8d3c] | 2 (#476) |
33.6575932884686399911926685223 | Mul(28, RiemannZeta(3)) [eda0f3 b347d3] | 2 (#477) |
109.387178187523079971376172698 | Mul(91, RiemannZeta(3)) [2fabeb edad97] | 2 (#478) |
107.408893127634702594281536900 | Mul(Mul(2, Sqrt(3)), Pow(Pi, 3)) [2fabeb edad97] | 2 (#479) |
15.7079632679489661923132169164 | Mul(5, Pi) [b0049f 47acde] | 2 (#480) |
0.314159265358979323846264338328 | Div(Pi, 10) [fad16f] Asin(Div(1, Mul(2, GoldenRatio))) [030560] | 2 (#481) |
0.197395559849880758370049765195 | Atan(Div(1, 5)) [5278da f8d280] | 2 (#482) |
0.00418407600207472386453821495929 | Atan(Div(1, 239)) [f8d280 8332d8] | 2 (#483) |
0.00418410041841004184100418410042 | Div(1, 239) [f8d280 8332d8] | 2 (#484) |
1.85459043600322446485702492584 | Mul(4, Atan(Div(1, 2))) [5278da cbf396] | 2 (#485) |
1.28700221758656877360561845743 | Mul(4, Atan(Div(1, 3))) [7ce79e cbf396] | 2 (#486) |
3.14285714285714285714285714286 | Div(22, 7) [81f500 2516c2] | 2 (#487) |
3.14159292035398230088495575221 | Div(355, 113) [bd3faa 1e3a25] | 2 (#488) |
0.303963550927013314331638389629 | Div(3, Pow(Pi, 2)) [8d7b3d 220e8d] SequenceLimit(Mul(Div(1, Pow(N, 2)), Sum(Totient(n), For(n, 1, N))), For(N, Infinity)) [220e8d] | 2 (#493) |
3.62759872846843570118815651528 | Div(Mul(2, Pi), Sqrt(3)) [9ea739] Mul(Gamma(Div(1, 3)), Gamma(Div(2, 3))) [2371b9] EisensteinG(2, Exp(Div(Mul(Mul(2, Pi), ConstI), 3))) [9ea739] Re(EisensteinG(2, Exp(Div(Mul(Mul(2, Pi), ConstI), 3)))) [9ea739] | 2 (#494) |
Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.
2021-03-15 19:12:00.328586 UTC