Fungrim home page

Fungrim entry: 77c324

zerosxC[x2x1]={φ,1φ}\mathop{\operatorname{zeros}\,}\limits_{x \in \mathbb{C}} \left[{x}^{2} - x - 1\right] = \left\{\varphi, 1 - \varphi\right\}
\mathop{\operatorname{zeros}\,}\limits_{x \in \mathbb{C}} \left[{x}^{2} - x - 1\right] = \left\{\varphi, 1 - \varphi\right\}
Fungrim symbol Notation Short description
ZeroszerosxSf(x)\mathop{\operatorname{zeros}\,}\limits_{x \in S} f(x) Zeros (roots) of function
Powab{a}^{b} Power
CCC\mathbb{C} Complex numbers
GoldenRatioφ\varphi The golden ratio (1.618...)
Source code for this entry:
    Formula(Equal(Zeros(Sub(Sub(Pow(x, 2), x), 1), ForElement(x, CC)), Set(GoldenRatio, Sub(1, GoldenRatio)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC