Fungrim home page

Fungrim entry: acfc1f

lim infnφ(n)log ⁣(log(n))n=eγ\liminf_{n \to \infty} \frac{\varphi(n) \log\!\left(\log(n)\right)}{n} = {e}^{-\gamma}
\liminf_{n \to \infty} \frac{\varphi(n) \log\!\left(\log(n)\right)}{n} = {e}^{-\gamma}
Fungrim symbol Notation Short description
SequenceLimitInferiorlim infnaf(n)\liminf_{n \to a} f(n) Limit inferior of sequence
Totientφ(n)\varphi(n) Euler totient function
Loglog(z)\log(z) Natural logarithm
Infinity\infty Positive infinity
Expez{e}^{z} Exponential function
ConstGammaγ\gamma The constant gamma (0.577...)
Source code for this entry:
    Formula(Equal(SequenceLimitInferior(Div(Mul(Totient(n), Log(Log(n))), n), For(n, Infinity)), Exp(Neg(ConstGamma)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC