Fungrim home page

Fungrim entry: 2e40b8

RF ⁣(0,y,z)2log(2)max ⁣(y,z)R_F\!\left(0, y, z\right) \ge \frac{2 \log(2)}{\sqrt{\max\!\left(y, z\right)}}
Assumptions:y(0,)  and  z(0,)y \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; z \in \left(0, \infty\right)
R_F\!\left(0, y, z\right) \ge \frac{2 \log(2)}{\sqrt{\max\!\left(y, z\right)}}

y \in \left(0, \infty\right) \;\mathbin{\operatorname{and}}\; z \in \left(0, \infty\right)
Fungrim symbol Notation Short description
CarlsonRFRF ⁣(x,y,z)R_F\!\left(x, y, z\right) Carlson symmetric elliptic integral of the first kind
Loglog(z)\log(z) Natural logarithm
Sqrtz\sqrt{z} Principal square root
OpenInterval(a,b)\left(a, b\right) Open interval
Infinity\infty Positive infinity
Source code for this entry:
    Formula(GreaterEqual(CarlsonRF(0, y, z), Div(Mul(2, Log(2)), Sqrt(Max(y, z))))),
    Variables(y, z),
    Assumptions(And(Element(y, OpenInterval(0, Infinity)), Element(z, OpenInterval(0, Infinity)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC