Fungrim home page

Fungrim entry: 9c53d7

Fn>φn15F_{n} > \frac{{\varphi}^{n} - 1}{\sqrt{5}}
Assumptions:nZ1n \in \mathbb{Z}_{\ge 1}
F_{n} > \frac{{\varphi}^{n} - 1}{\sqrt{5}}

n \in \mathbb{Z}_{\ge 1}
Fungrim symbol Notation Short description
FibonacciFnF_{n} Fibonacci number
Powab{a}^{b} Power
GoldenRatioφ\varphi The golden ratio (1.618...)
Sqrtz\sqrt{z} Principal square root
ZZGreaterEqualZn\mathbb{Z}_{\ge n} Integers greater than or equal to n
Source code for this entry:
    Formula(Greater(Fibonacci(n), Div(Sub(Pow(GoldenRatio, n), 1), Sqrt(5)))),
    Assumptions(Element(n, ZZGreaterEqual(1))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC