Fungrim home page

Fungrim entry: 05209f

n=0Fnzn=z1zz2\sum_{n=0}^{\infty} F_{n} {z}^{n} = \frac{z}{1 - z - {z}^{2}}
Assumptions:zC  and  z<φ1z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|z\right| < \varphi - 1
\sum_{n=0}^{\infty} F_{n} {z}^{n} = \frac{z}{1 - z - {z}^{2}}

z \in \mathbb{C} \;\mathbin{\operatorname{and}}\; \left|z\right| < \varphi - 1
Fungrim symbol Notation Short description
Sumnf(n)\sum_{n} f(n) Sum
FibonacciFnF_{n} Fibonacci number
Powab{a}^{b} Power
Infinity\infty Positive infinity
CCC\mathbb{C} Complex numbers
Absz\left|z\right| Absolute value
GoldenRatioφ\varphi The golden ratio (1.618...)
Source code for this entry:
    Formula(Equal(Sum(Mul(Fibonacci(n), Pow(z, n)), For(n, 0, Infinity)), Div(z, Sub(Sub(1, z), Pow(z, 2))))),
    Assumptions(And(Element(z, CC), Less(Abs(z), Sub(GoldenRatio, 1)))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC