From Ordner, a catalog of real numbers in Fungrim.
This page lists the top 250 decimal keys in Ordner when ranked by the number of distinct symbolic expressions in Fungrim matching the key. See also: Top 250 real numbers, excluding integers and Top 250 real numbers, including integers.
Decimal | Expression [entries] | Frequency |
---|---|---|
1.00000000000000000000000000000 | 1 [23256b 848d97 f0d72c a891da 1eeccf bcdfc6 4b040d 42d727 c19cd6 a0ba58 ... 10 of 1910 shown] Exp(0) [27ca8d] Sinc(0) [b18020] Neg(-1) [1eeccf 5e1d3b 72cef9 27586f a68e0e 3df748 2760e7 5dc1c0 71a264 14a365 ... 10 of 346 shown] 4 of 125 expressions shown | 2182 (#1) |
0.00000000000000000000000000000 | 0 [569278 671fcb f0d72c 1eeccf bcdfc6 c19cd6 2ea614 3df748 c3e340 a0ba58 ... 10 of 1718 shown] Sin(0) [c52772] Arg(1) [c423d2] Log(1) [d496b8 07731b] 4 of 79 expressions shown | 1719 (#2) |
3.14159265358979323846264338328 | Pi [848d97 77e519 bcdfc6 4b040d 83566f 235d0d 42d727 81f7db cb493d aac129 ... 10 of 854 shown] Arg(-1) [a8b41c] Im(Log(-1)) [590136 2f1f7b] Neg(Neg(Pi)) [a020e9 43cc72 60f858 1d730a 47acde 2ef763 d8791e f9f31d b7d740 81f7db ... 10 of 32 shown] 4 of 78 expressions shown | 854 (#4) |
0.915965594177219015054603514932 | ConstCatalan [ce66a9 1f1fb4 d6703a fd82ab c2976e ba58e0 79f20e 08cda4 6d3591 ed4cca ... 10 of 47 shown] Im(PolyLog(2, ConstI)) [1d65c2 208da7] Im(Mul(ConstCatalan, ConstI)) [208da7] DirichletL(2, DirichletCharacter(4, 3)) [9e9922] 4 of 37 expressions shown | 47 (#28) |
0.785398163397448309615660845820 | Atan(1) [157c6c 0c9939] Div(Pi, 4) [47acde 71a0ff 6c3ba9 cd55cf 157c6c 79f20e 08cda4 3b8c97 6d3591 8a9884 ... 10 of 25 shown] CarlsonRC(1, 2) [eac389] Arg(Sqrt(ConstI)) [0ad836] 4 of 35 expressions shown | 52 (#24) |
0.500000000000000000000000000000 | Div(1, 2) [47acde ad1eaf c7b921 a1a3d4 4c462b 7d559c 235d0d 72b5bd a498dd 27586f ... 10 of 289 shown] Sin(Div(Pi, 6)) [ad6b74] HurwitzZeta(0, 0) [150b3e] CarlsonRG(0, 0, 1) [d5ff09] 4 of 33 expressions shown | 320 (#8) |
1.57079632679489661923132169164 | Asin(1) [722241] Acos(0) [3ff35f] Div(Pi, 2) [47acde 0b8fd6 8ef3d7 77e519 bfc13f 8bb972 efebb8 190843 8c368f 48910b ... 10 of 93 shown] Arg(ConstI) [735409] 4 of 31 expressions shown | 113 (#14) |
2.00000000000000000000000000000 | 2 [569278 848d97 a891da 1eeccf bcdfc6 4b040d 42d727 a0ba58 d5917b dabb47 ... 10 of 1617 shown] Neg(-2) [d45548 89d93c 39b699 c4febd 8c9f96 210213 e47bfb e50a56 21851b 5c178f ... 10 of 27 shown] Sqrt(4) [9d5b81] Totient(4) [6d37c9] 4 of 26 expressions shown | 1617 (#3) |
0.577215664901532860606512090082 | ConstGamma [98f642 39fe5f 433a5c a2675b 014c4e 967bbb 39ce44 ee3dc5 cf70ce 28bf9a ... 10 of 57 shown] StieltjesGamma(0) [e5bd3c 8ae153] StieltjesGamma(0, 1) [8ae153] Neg(Neg(ConstGamma)) [ea2482 f946a5 686524 acfc1f a4cc3b c76eaf 3fe553] 4 of 16 expressions shown | 58 (#22) |
0.261799387799149436538553615273 | Div(Pi, 12) [7dd050] Atan(Sub(2, Sqrt(3))) [7dd050] Im(Div(Mul(ConstI, Pi), 12)) [175b7a 0abbe1 871996] Im(Div(Mul(Pi, ConstI), 12)) [1bae52] 4 of 16 expressions shown | 5 (#201) |
1.31102877714605990523241979495 | EllipticK(-1) [afb22a] Re(EllipticK(2)) [630eca] CarlsonRF(0, 1, 2) [28237a] Neg(Im(EllipticK(2))) [630eca] 4 of 16 expressions shown | 9 (#116) |
0.599070117367796103719961246140 | Im(EllipticE(2)) [5d2c01] Re(EllipticE(2)) [5d2c01] Im(AGM(1, ConstI)) [69d0a3] Re(AGM(1, ConstI)) [69d0a3] 4 of 15 expressions shown | 4 (#236) |
2.35619449019234492884698253746 | CarlsonRD(0, 1, 1) [84ea08] Div(Mul(3, Pi), 4) [64a808 3e05c6 47acde eda57d b468f3 37ffb7 61c002 add3ea 78131f 4e4380 ... 10 of 22 shown] CarlsonRJ(0, 1, 1, 1) [64a808] Im(CarlsonRD(0, -1, -1)) [d52bda] 4 of 13 expressions shown | 22 (#57) |
6.00000000000000000000000000000 | 6 [a0d13f 47acde 4c0698 a93679 9206a3 a4d6fc 67bb53 9d5b81 d8cac6 ef2c71 ... 10 of 152 shown] Neg(-6) [e50a56 fa65f3 b4c968 a93679] Sqrt(36) [9d5b81] LandauG(5) [177218] 4 of 13 expressions shown | 153 (#11) |
24.0000000000000000000000000000 | 24 [29d9ab a0d13f a93679 faf448 a1a3d4 9933df 014c4e 9d5b81 b506ad e93ca8 ... 10 of 48 shown] Neg(-24) [20b6d2 e50a56] Totient(90) [6d37c9] Totient(56) [6d37c9] 4 of 13 expressions shown | 50 (#26) |
1.41421356237309504880168872421 | Sqrt(2) [81c491 e30d7e 4b040d 9d5b81 2f3ed3 f9190b 8c368f 9f2b18 c6c92a dabb47 ... 10 of 94 shown] Pow(2, Div(1, 2)) [7f9273] Abs(Add(1, ConstI)) [62b0c4 78131f fe2627 b468f3 69d0a3 078869 0ad836 9e30e7 4c8873 e54e61 ... 10 of 14 shown] Abs(Sub(1, ConstI)) [630eca 62b0c4 f1dd8a 2dcf0c 5174ea e54e61 7c50d1 8519dd] 4 of 12 expressions shown | 105 (#15) |
4.00000000000000000000000000000 | 4 [848d97 a891da 7ddf69 a4d6fc 4b040d 235d0d cb493d 5e1d3b aac129 8c368f ... 10 of 610 shown] Neg(-4) [669765 106bf7 488c5c e74de0 3be335 20b6d2 7ddf69 99dc4a 1dec0d aa967b ... 10 of 15 shown] Sqrt(16) [9d5b81] Totient(8) [6d37c9] 4 of 12 expressions shown | 616 (#6) |
0.707106781186547524400844362105 | Sqrt(Div(1, 2)) [61480c] Div(1, Sqrt(2)) [61480c 6d9ceb 0ad836 13c539 042551 63ba30] Div(Sqrt(2), 2) [61480c 4d7098 e3896e 5fc688 14f8c2] Sin(Div(Pi, 4)) [5fc688] 4 of 12 expressions shown | 14 (#86) |
12.0000000000000000000000000000 | 12 [a0d13f 4c0698 e30d7e a4d6fc 9d5b81 5404ce 5e1d3b e5bd3c 03ad5a 11302a ... 10 of 88 shown] Neg(-12) [20b6d2 e50a56] BarnesG(5) [5cb675] LandauG(7) [177218] 4 of 12 expressions shown | 89 (#17) |
1.04719755119659774615421446109 | Div(Pi, 3) [47acde 799742 3aed02 140815 c584c3 340936 3c833f 706783] Atan(Sqrt(3)) [706783] Im(Div(Mul(Pi, ConstI), 3)) [9aa62c 0c7de4 27b2c7 ec0054 0c8084] Arg(Exp(Div(Mul(Pi, ConstI), 3))) [0c7de4 ec0054 0c8084 9aa62c] 4 of 11 expressions shown | 15 (#79) |
3.00000000000000000000000000000 | 3 [a891da 41cf8e a4d6fc 4b040d 83566f c6d6e2 235d0d 42d727 72b5bd cb493d ... 10 of 645 shown] Sqrt(9) [9d5b81] Neg(-3) [af984e a93679 4fe0ff 20b6d2 0b4d4b 99dc4a e50a56 dd5681 cb0a9b 2a52af] LandauG(3) [177218] 4 of 11 expressions shown | 646 (#5) |
1.61803398874989484820458683437 | GoldenRatio [d774fe e09458 31f52c 98a765 42d727 bceed4 050fdb 6d2709 0cd1a4 6a11ce ... 10 of 35 shown] Neg(Neg(GoldenRatio)) [24107d] Div(Add(1, Sqrt(5)), 2) [77d2f8] Mul(2, Cos(Div(Pi, 5))) [98a765] 4 of 11 expressions shown | 35 (#38) |
5.00000000000000000000000000000 | 5 [a0d13f 47acde a93679 390158 a4d6fc 9d5b81 d8cac6 98a765 42d727 5404ce ... 10 of 141 shown] Neg(-5) [a20761 106bf7 31fef8 0e2bcb c7d4c2 e50a56 cf93bc 6ef3d1 b0f293 e1497f] Sqrt(25) [9d5b81] Fibonacci(5) [b506ad] 4 of 10 expressions shown | 142 (#12) |
8.00000000000000000000000000000 | 8 [a0d13f a93679 390158 033d39 f12e20 be0f54 4b040d 83566f 9d5b81 5404ce ... 10 of 154 shown] Neg(-8) [20b6d2 e50a56 baf960] Totient(15) [6d37c9] Totient(30) [6d37c9] 4 of 10 expressions shown | 156 (#9) |
0.866025403784438646763723170753 | Sin(Div(Pi, 3)) [3c833f] Div(Sqrt(3), 2) [2371b9 3c833f 3aed02] IncompleteEllipticE(Div(Pi, 3), 1) [3aed02] Im(Exp(Div(Mul(Pi, ConstI), 3))) [0c7de4 ec0054 0c8084 9aa62c] 4 of 10 expressions shown | 26 (#51) |
1.64493406684822643647241516665 | PolyLog(2, 1) [9206a3] RiemannZeta(2) [9923b7 a01b6e a5e52e 7cb17f 67bb53 e93ca8 856317] HurwitzZeta(2, 1) [575b8f] Div(Pow(Pi, 2), 6) [47acde a91200 ac8d3c a01b6e fa0292 babd3c 575b8f fbc53d] 4 of 9 expressions shown | 15 (#80) |
16.0000000000000000000000000000 | 16 [033d39 faf448 e30d7e 9933df 85e42e 9d5b81 b506ad e93ca8 2f3ed3 c5a9cf ... 10 of 62 shown] Neg(-16) [20b6d2 e50a56] Totient(17) [6d37c9] Totient(48) [6d37c9] 4 of 9 expressions shown | 64 (#20) |
0.847213084793979086606499123482 | Abs(EllipticE(2)) [5d2c01] Abs(AGM(1, ConstI)) [69d0a3] AGM(1, Div(1, Sqrt(2))) [6d9ceb] AGM(1, Div(Sqrt(2), 2)) [e3896e] 4 of 9 expressions shown | 6 (#154) |
1.85407467730137191843385034720 | Abs(EllipticK(2)) [630eca] EllipticK(Div(1, 2)) [cc22bf] Abs(CarlsonRF(0, 1, -1)) [f1dd8a] EllipticPi(0, Div(1, 2)) [3c4979] 4 of 9 expressions shown | 7 (#135) |
1.66608110180938734263095537127 | Neg(Re(CarlsonRD(1, 1, -1))) [545e8b] Neg(Im(CarlsonRJ(1, 1, 1, -1))) [e04867] Neg(Im(CarlsonRJ(1, -1, -1, 1))) [4c1db8] Neg(Re(CarlsonRJ(1, 1, -1, -1))) [534335] 4 of 9 expressions shown | 4 (#247) |
2.09439510239319549230842892219 | Div(Mul(2, Pi), 3) [47acde 49514d 2f6805] Arg(Add(-1, Mul(Sqrt(3), ConstI))) [21b67f] Im(Div(Mul(Mul(2, Pi), ConstI), 3)) [ea3e3c 4af6db 1b2d8a 4a200a 204acd ad91ae 13cac5 0c7de4 21b67f 83566f ... 10 of 19 shown] Arg(Exp(Div(Mul(Mul(2, Pi), ConstI), 3))) [ea3e3c 4af6db 1b2d8a 4a200a 204acd ad91ae 13cac5 0c7de4 21b67f 83566f ... 10 of 19 shown] 4 of 8 expressions shown | 22 (#56) |
0.318309886183790671537767526745 | Div(1, Pi) [68b73d cac83e c7f7a5 c6c108 47acde 4c0698 a7095f 7ae3ed 57fcaf de9800 ... 10 of 17 shown] Neg(Im(Div(1, Mul(Pi, ConstI)))) [22b67a da1873] Mul(Div(1, 2), Hypergeometric2F1(Div(1, 2), Neg(Div(1, 2)), 1, 1)) [a7095f] Mul(Div(1, 4), Hypergeometric2F1(Neg(Div(1, 2)), Neg(Div(1, 2)), 1, 1)) [c6c108] 4 of 8 expressions shown | 19 (#65) |
1.73205080756887729352744634151 | Sqrt(3) [98f642 8356db 7697af f12e20 e3e4c5 9d5b81 967bbb 30a054 9ea739 68b73d ... 10 of 55 shown] Im(Mul(Sqrt(3), ConstI)) [21b67f 175b7a 0abbe1 e3e4c5] Im(Mul(ConstI, Sqrt(3))) [4af6db] Im(Add(1, Mul(Sqrt(3), ConstI))) [0abbe1] 4 of 8 expressions shown | 56 (#23) |
42.0000000000000000000000000000 | 42 [a0d13f a1108d 6d37c9 29741c aed6bd 588889 dc558b a3035f 9d5b81 b506ad ... 10 of 16 shown] Totient(98) [6d37c9] Totient(49) [6d37c9] Totient(43) [6d37c9] 4 of 8 expressions shown | 17 (#73) |
0.107653919226484576615323445091 | HalphenConstant [e2bfdb f5e0b0 831ea4 d0993b 5c1e44 c26bc9 9758ac 6161c7 06c468 31adf6] UniqueZero(Brackets(JacobiTheta(2, 0, Div(Log(Neg(x)), Mul(Mul(2, Pi), ConstI)), 2)), ForElement(x, OpenInterval(0, 1))) [06c468] UniqueZero(Add(Neg(Div(1, 8)), Sum(Div(Mul(n, Pow(x, n)), Sub(1, Pow(Neg(x), n))), For(n, 1, Infinity))), ForElement(x, OpenInterval(0, 1))) [9758ac] UniqueZero(Brackets(Sum(Mul(Pow(Add(Mul(2, n), 1), 2), Pow(Neg(x), Div(Mul(n, Add(n, 1)), 2))), For(n, 0, Infinity))), ForElement(x, OpenInterval(0, 1))) [31adf6] 4 of 8 expressions shown | 10 (#110) |
20.0000000000000000000000000000 | 20 [8332d8 a0d13f faf448 9933df b894a3 85e42e 9d5b81 b506ad e93ca8 45267a ... 10 of 35 shown] Neg(-20) [20b6d2 e50a56 583bf9] LandauG(9) [177218] Totient(50) [6d37c9] 4 of 8 expressions shown | 37 (#35) |
40.0000000000000000000000000000 | 40 [a0d13f 6d37c9 618a9f dc558b 7cb17f a3035f fd8310 9d5b81 b506ad 856db2 ... 10 of 16 shown] Neg(-40) [20b6d2] Totient(75) [6d37c9] Totient(88) [6d37c9] 4 of 8 expressions shown | 17 (#75) |
0.565162139789654229908969879624 | Neg(Im(CarlsonRD(1, 1, -1))) [545e8b] Neg(Re(CarlsonRJ(1, 1, 1, -1))) [e04867] Neg(Im(CarlsonRJ(1, 1, -1, -1))) [534335] Neg(Re(CarlsonRJ(1, -1, -1, 1))) [4c1db8] 4 of 8 expressions shown | 4 (#246) |
60.0000000000000000000000000000 | 60 [a0d13f f5f706 29741c 6d37c9 dc558b 6ade92 a3035f fd8310 b506ad 856db2 ... 10 of 12 shown] Neg(-60) [20b6d2] Totient(99) [6d37c9] LandauG(13) [177218] 4 of 8 expressions shown | 13 (#94) |
0.636619772367581343075535053490 | Div(2, Pi) [799b5e 47acde fdc94c d6703a 6fce07 d5b7e8] Sinc(Div(Pi, 2)) [fdc94c] Neg(Neg(Div(2, Pi))) [d5b7e8] Im(Div(Mul(2, ConstI), Pi)) [c18c95] 4 of 7 expressions shown | 8 (#121) |
7.00000000000000000000000000000 | 7 [a0d13f a93679 390158 7377c8 d0b5a7 d6703a eca10b 540931 faf448 9b2f38 ... 10 of 80 shown] Neg(-7) [7cc3d3 20b6d2 e50a56] Sqrt(49) [9d5b81] PartitionsP(5) [856db2] 4 of 7 expressions shown | 82 (#18) |
0.618033988749894848204586834366 | Sub(GoldenRatio, 1) [31f52c 05209f] Div(1, GoldenRatio) [2e0596 31f52c 6d2709] Div(Sub(Sqrt(5), 1), 2) [344963] Neg(Sub(1, GoldenRatio)) [ebfcd8 77c324] 4 of 7 expressions shown | 8 (#123) |
30.0000000000000000000000000000 | 30 [a0d13f a17386 faf448 9933df e50a56 9d5b81 b506ad e93ca8 d496b8 63f368 ... 10 of 30 shown] Neg(-30) [e50a56] LandauG(11) [177218] Totient(62) [6d37c9] 4 of 7 expressions shown | 30 (#41) |
32.0000000000000000000000000000 | 32 [ce66a9 85e42e 9d5b81 b506ad e93ca8 cf70ce d496b8 a498dd cedcfc dc507f ... 10 of 27 shown] Neg(-32) [20b6d2] Totient(80) [6d37c9] Totient(96) [6d37c9] 4 of 7 expressions shown | 28 (#47) |
36.0000000000000000000000000000 | 36 [a0d13f f88455 6d37c9 02d14f fb5d88 dc558b 7cb17f f33f09 a3035f 9d5b81 ... 10 of 19 shown] Neg(-36) [20b6d2 a93679] Totient(57) [6d37c9] Totient(76) [6d37c9] 4 of 7 expressions shown | 21 (#63) |
6.28318530717958647692528676656 | Mul(2, Pi) [848d97 47acde d69b41 f1dd8a 83566f b0e1cb e54e61 fb7a63 30a054 21b67f ... 10 of 155 shown] Neg(Neg(Mul(2, Pi))) [4704f9 20d72c 47acde bf8f37] Im(Mul(Mul(2, Pi), ConstI)) [848d97 2090c3 e28209 57d31a 0c7de4 24a793 5161ab 83566f b0e1cb 6c71c0 ... 10 of 53 shown] Neg(Im(Neg(Mul(Mul(2, Pi), ConstI)))) [348b26 f0f53b] 4 of 6 expressions shown | 155 (#10) |
1.08232323371113819151600369654 | RiemannZeta(4) [e93ca8 7cb17f 8a9884 62de01] HurwitzZeta(4, 1) [2d4828] Div(Pow(Pi, 4), 90) [9bf21b 2d4828 33690e] Mul(Div(1, 90), Pow(Pi, 4)) [7cb17f] 4 of 6 expressions shown | 7 (#132) |
10.0000000000000000000000000000 | 10 [43cc72 a0d13f 73f5e7 a93679 390158 540931 626026 faf448 214a91 b0921b ... 10 of 71 shown] Neg(-10) [e50a56 a93679] Totient(11) [6d37c9] Totient(22) [6d37c9] 4 of 6 expressions shown | 72 (#19) |
0.309016994374947424102293417183 | Sin(Div(Pi, 10)) [fad16f] Div(1, Mul(2, GoldenRatio)) [030560] Re(Exp(Div(Mul(Mul(2, Pi), ConstI), 5))) [7a56c2] Re(Neg(Exp(Div(Mul(Mul(3, Pi), ConstI), 5)))) [7a56c2] 4 of 6 expressions shown | 3 (#295) |
0.333333333333333333333333333333 | Div(1, 3) [d3b45d 98f642 8356db e2035a e3e4c5 6c71c0 7f3485 68b73d f48f54 8f4e31 ... 10 of 40 shown] Neg(Div(-1, 3)) [0983d1] Im(Div(ConstI, 3)) [52302f] Neg(Neg(Div(1, 3))) [68b73d e7b5be fda595 685892 7f3485 90c66a] 4 of 6 expressions shown | 42 (#31) |
0.809016994374947424102293417183 | Cos(Div(Pi, 5)) [98a765] Sin(Div(Mul(3, Pi), 10)) [487e35] Re(Exp(Div(Mul(Pi, ConstI), 5))) [7a56c2] Neg(Re(Neg(Exp(Div(Mul(Pi, ConstI), 5))))) [7a56c2] 4 of 6 expressions shown | 3 (#305) |
18.0000000000000000000000000000 | 18 [a0d13f faf448 9933df 85e42e 9d5b81 b506ad e93ca8 6c71c0 5404ce d496b8 ... 10 of 29 shown] Neg(-18) [e50a56] Totient(27) [6d37c9] Totient(54) [6d37c9] 4 of 6 expressions shown | 30 (#40) |
1.54368663391782125453009350113 | EllipticK(Sub(Mul(4, Sqrt(3)), 7)) [b95ffa] Re(EllipticK(Div(Add(1, Mul(Sqrt(3), ConstI)), 2))) [0abbe1] Re(EllipticK(Div(Sub(1, Mul(Sqrt(3), ConstI)), 2))) [175b7a] Div(Mul(Sqrt(Add(3, Mul(2, Sqrt(3)))), Pow(Gamma(Div(1, 3)), 3)), Mul(Pow(2, Div(10, 3)), Pi)) [b95ffa] 4 of 6 expressions shown | 3 (#310) |
1.59814200211254014446096510539 | EllipticK(Sub(Div(1, 2), Div(Sqrt(3), 4))) [40a376] Abs(EllipticK(Div(Sub(1, Mul(Sqrt(3), ConstI)), 2))) [175b7a] Abs(EllipticK(Div(Add(1, Mul(Sqrt(3), ConstI)), 2))) [0abbe1] Div(Mul(Pow(3, Div(1, 4)), Pow(Gamma(Div(1, 3)), 3)), Mul(Mul(4, Pow(2, Div(1, 3))), Pi)) [40a376] 4 of 6 expressions shown | 3 (#311) |
0.623225240140230513394020080251 | Re(CarlsonRC(1, -1)) [25435b] Neg(Im(CarlsonRC(-1, 1))) [7ea1ad] Div(Mul(Sqrt(2), Log(Add(1, Sqrt(2)))), 2) [7ea1ad 25435b] Im(Mul(Div(Mul(Sqrt(2), Log(Add(1, Sqrt(2)))), 2), ConstI)) [7ea1ad] 4 of 6 expressions shown | 2 (#532) |
1.11072073453959156175397024752 | Re(CarlsonRC(-1, 1)) [7ea1ad] Div(Mul(Pi, Sqrt(2)), 4) [7ea1ad 25435b] Neg(Im(CarlsonRC(1, -1))) [25435b] Im(Mul(Div(Mul(Pi, Sqrt(2)), 4), ConstI)) [25435b] 4 of 6 expressions shown | 2 (#533) |
0.299535058683898051859980623070 | Re(CarlsonRG(0, 1, -1)) [9e30e7] Im(CarlsonRG(0, 1, -1)) [9e30e7] Div(Pow(Pi, Div(3, 2)), Mul(Sqrt(2), Pow(Gamma(Div(1, 4)), 2))) [3f1547 84f403] Div(Mul(Sqrt(2), Pow(Pi, Div(3, 2))), Mul(2, Pow(Gamma(Div(1, 4)), 2))) [7c50d1 9e30e7] 4 of 6 expressions shown | 4 (#241) |
1.06793798966739570226868782321 | CarlsonRD(0, 1, 2) [060366] CarlsonRJ(0, 1, 2, 2) [c05ed8] Re(CarlsonRD(0, -1, 1)) [2dcf0c] Re(CarlsonRJ(0, -1, 1, 1)) [62b0c4] 4 of 6 expressions shown | 4 (#242) |
1.75932784950901143303710761145 | Abs(CarlsonRD(1, 1, -1)) [545e8b] Abs(CarlsonRJ(1, 1, 1, -1)) [e04867] Abs(CarlsonRJ(1, 1, -1, -1)) [534335] Abs(CarlsonRJ(1, -1, -1, 1)) [4c1db8] 4 of 6 expressions shown | 4 (#248) |
0.130899693899574718269276807637 | Im(Div(Mul(Pi, ConstI), 24)) [204acd a1a3d4] Arg(Exp(Div(Mul(Pi, ConstI), 24))) [a1a3d4] Neg(Im(Neg(Div(Mul(Pi, ConstI), 24)))) [204acd] Neg(Arg(Exp(Neg(Div(Mul(Pi, ConstI), 24))))) [204acd] 4 of 6 expressions shown | 3 (#431) |
0.628318530717958647692528676656 | Div(Pi, 5) [98a765 47acde] Im(Div(Mul(Pi, ConstI), 5)) [7a56c2] Arg(Exp(Div(Mul(Pi, ConstI), 5))) [7a56c2] Neg(Arg(Neg(Exp(Div(Mul(Mul(4, Pi), ConstI), 5))))) [7a56c2] 4 of 5 expressions shown | 3 (#279) |
1.25663706143591729538505735331 | Div(Mul(2, Pi), 5) [47acde] Im(Div(Mul(Mul(2, Pi), ConstI), 5)) [7a56c2] Arg(Exp(Div(Mul(Mul(2, Pi), ConstI), 5))) [7a56c2] Neg(Arg(Neg(Exp(Div(Mul(Mul(3, Pi), ConstI), 5))))) [7a56c2] 4 of 5 expressions shown | 2 (#432) |
1.88495559215387594307758602997 | Div(Mul(3, Pi), 5) [47acde] Im(Div(Mul(Mul(3, Pi), ConstI), 5)) [7a56c2] Arg(Exp(Div(Mul(Mul(3, Pi), ConstI), 5))) [7a56c2] Neg(Arg(Neg(Exp(Div(Mul(Mul(2, Pi), ConstI), 5))))) [7a56c2] 4 of 5 expressions shown | 2 (#433) |
2.51327412287183459077011470662 | Div(Mul(4, Pi), 5) [47acde] Im(Div(Mul(Mul(4, Pi), ConstI), 5)) [7a56c2] Arg(Exp(Div(Mul(Mul(4, Pi), ConstI), 5))) [7a56c2] Neg(Arg(Neg(Exp(Div(Mul(Pi, ConstI), 5))))) [7a56c2] 4 of 5 expressions shown | 2 (#434) |
9.86960440108935861883449099988 | Pow(Pi, 2) [47acde ac8d3c 11687b 39ce44 af0dfc 575b8f e03b7c 0477b3 a91200 951f86 ... 10 of 40 shown] Mul(6, PolyLog(2, 1)) [9206a3] Mul(6, RiemannZeta(2)) [67bb53] Sub(DigammaFunction(Div(1, 4), 1), Mul(8, ConstCatalan)) [8ee7c9] 4 of 5 expressions shown | 43 (#30) |
4.93480220054467930941724549994 | Div(Pow(Pi, 2), 2) [868061 47acde 1165fc 595f46] Mul(3, RiemannZeta(2)) [a5e52e] HurwitzZeta(2, Div(1, 2)) [868061] DigammaFunction(Div(1, 2), 1) [595f46] 4 of 5 expressions shown | 5 (#189) |
2.82842712474619009760337744842 | Sqrt(8) [e37535 5f7334 9d5b81] Mul(2, Sqrt(2)) [669765 f9190b c9ead2 522f54 361801 fe4967 6b9f81 2991b5] Pow(2, Div(3, 2)) [60ac50] Abs(Add(1, Mul(Sqrt(7), ConstI))) [29c095] 4 of 5 expressions shown | 13 (#91) |
3.31662479035539984911493273667 | Sqrt(11) [9d5b81 a498dd] Im(Mul(Sqrt(11), ConstI)) [a498dd] Im(Add(1, Mul(Sqrt(11), ConstI))) [a498dd] Abs(Mul(Div(1, 2), Add(1, Mul(Sqrt(43), ConstI)))) [5b108e] 4 of 5 expressions shown | 3 (#281) |
55.0000000000000000000000000000 | 55 [a0d13f a1108d 6d37c9 fb5d88 dc558b a3035f b506ad 856db2 177218] Neg(-55) [20b6d2] Fibonacci(10) [b506ad] Fibonacci(Pow(10, 1)) [5818e3] 4 of 5 expressions shown | 11 (#102) |
1.20205690315959428539973816151 | RiemannZeta(3) [d6703a e93ca8 45267a 3a5167 39ce44 ef2c71 856317 8a9884 b347d3 9923b7 ... 10 of 28 shown] HurwitzZeta(3, 1) [b4ed44] MultiZetaValue(2, 1) [345c26] Sum(Div(HarmonicNumber(n), Pow(Add(n, 1), 2)), For(n, 1, Infinity)) [345c26] 4 of 5 expressions shown | 28 (#45) |
0.0333333333333333333333333333333 | Div(1, 30) [588889 aed6bd] Neg(BernoulliB(8)) [aed6bd] Neg(BernoulliB(4)) [aed6bd] Neg(Neg(Div(1, 30))) [aed6bd] 4 of 5 expressions shown | 2 (#469) |
0.250000000000000000000000000000 | Div(1, 4) [390158 e30d7e f12e20 4b040d f1dd8a b7f13b 2f3ed3 e54e61 ed4cca aac129 ... 10 of 115 shown] Im(Div(ConstI, 4)) [5706ab 7f9273] Neg(Neg(Div(1, 4))) [7f9273 54daa9 7d7c65 95e9e4 4c8873] Neg(Im(Neg(Div(ConstI, 4)))) [5706ab] 4 of 5 expressions shown | 116 (#13) |
0.750000000000000000000000000000 | Div(3, 4) [ce66a9 d3b45d c4febd 4d2c10 e2035a cb6c9c fb7a63 d15f11 b347d3 fa8e96 ... 10 of 34 shown] Neg(Neg(Div(3, 4))) [303827 3047b1] Im(Mul(Div(3, 4), ConstI)) [c2c002 d3b45d c4febd e2035a 9b868d 80f43a 0ce854 fa8e96] Im(Add(Div(1, 3), Mul(Div(3, 4), ConstI))) [9b868d c2c002 d3b45d e2035a] 4 of 5 expressions shown | 34 (#39) |
22.0000000000000000000000000000 | 22 [a0d13f faf448 9933df 9d5b81 81f500 b506ad e93ca8 5404ce d496b8 6d37c9 ... 10 of 25 shown] Neg(-22) [3131df e50a56] Totient(46) [6d37c9] Totient(23) [6d37c9] 4 of 5 expressions shown | 26 (#50) |
15.0000000000000000000000000000 | 15 [a0d13f 7377c8 faf448 9b2f38 9933df 85e42e 9d5b81 b506ad e93ca8 e2bc80 ... 10 of 44 shown] Neg(-15) [20b6d2 e50a56 a93679] LandauG(8) [177218] BellNumber(4) [4c6267] 4 of 5 expressions shown | 47 (#29) |
7.87480497286120987214532299723 | Mul(Sqrt(2), Pow(Pi, Div(3, 2))) [9e30e7 7c50d1 4dabda 5d2c01] Im(Mul(Mul(Sqrt(2), Add(1, ConstI)), Pow(Pi, Div(3, 2)))) [69d0a3] Re(Mul(Mul(Sqrt(2), Sub(1, ConstI)), Pow(Pi, Div(3, 2)))) [5174ea] Re(Mul(Mul(Sqrt(2), Add(1, ConstI)), Pow(Pi, Div(3, 2)))) [69d0a3] 4 of 5 expressions shown | 6 (#155) |
0.913579138156116821407242593401 | JacobiTheta(4, 0, ConstI) [3fb309 8c4ab4 7d7c65 7b362f 2f3ed3 66df95 dd5f43] JacobiTheta(2, 0, ConstI) [7d7c65] JacobiTheta(3, 0, Add(1, ConstI)) [4c8873] Mul(Brackets(Pow(2, Neg(Div(1, 4)))), JacobiTheta(3, 0, ConstI)) [7d7c65 4c8873] 4 of 5 expressions shown | 8 (#124) |
420.000000000000000000000000000 | 420 [dc558b 177218] LandauG(21) [177218] LandauG(19) [177218] LandauG(22) [177218] 4 of 5 expressions shown | 2 (#642) |
60060.0000000000000000000000000 | 60060 [177218] LandauG(45) [177218] LandauG(46) [177218] LandauG(43) [177218] 4 of 5 expressions shown | 1 (#3089) |
180180.000000000000000000000000 | 180180 [177218] LandauG(49) [177218] LandauG(51) [177218] LandauG(50) [177218] 4 of 5 expressions shown | 1 (#3091) |
360360.000000000000000000000000 | 360360 [177218] LandauG(56) [177218] LandauG(53) [177218] LandauG(54) [177218] 4 of 5 expressions shown | 1 (#3092) |
6846840.00000000000000000000000 | 6846840 [177218] LandauG(75) [177218] LandauG(73) [177218] LandauG(74) [177218] 4 of 5 expressions shown | 1 (#3102) |
19399380.0000000000000000000000 | 19399380 [177218] LandauG(80) [177218] LandauG(81) [177218] LandauG(79) [177218] 4 of 5 expressions shown | 1 (#3106) |
58198140.0000000000000000000000 | 58198140 [177218] LandauG(88) [177218] LandauG(86) [177218] LandauG(87) [177218] 4 of 5 expressions shown | 1 (#3108) |
116396280.000000000000000000000 | 116396280 [177218] LandauG(90) [177218] LandauG(92) [177218] LandauG(91) [177218] 4 of 5 expressions shown | 1 (#3109) |
232792560.000000000000000000000 | 232792560 [177218] LandauG(97) [177218] LandauG(99) [177218] LandauG(98) [177218] 4 of 5 expressions shown | 1 (#3112) |
9.42477796076937971538793014984 | Mul(3, Pi) [639d7b 64a808 3e05c6 47acde 4d2c10 eda57d 255142 be0f54 37ffb7 b468f3 ... 10 of 38 shown] Neg(Neg(Mul(3, Pi))) [639d7b e5bba3] Im(Mul(Mul(3, Pi), ConstI)) [7a56c2] 4 of 4 expressions shown | 38 (#34) |
0.523598775598298873077107230547 | Div(Pi, 6) [45740a d88dd1 47acde a91f8d f89d5a ad6b74 aac129 3c1021 eba27c] Neg(Neg(Div(Pi, 6))) [f89d5a] Atan(Div(1, Sqrt(3))) [3c1021] | 9 (#113) |
2.23606797749978969640917366873 | Sqrt(5) [390158 cb6c9c d0d91a 9d5b81 bceed4 050fdb 6ade92 344963 223ce1 9c53d7 ... 10 of 24 shown] Abs(Add(1, Mul(2, ConstI))) [b58070] Abs(Mul(Div(1, 2), Add(1, Mul(Sqrt(19), ConstI)))) [3ee358] 4 of 4 expressions shown | 26 (#49) |
2.64575131106459059050161575364 | Sqrt(7) [7cc3d3 29c095 72f583 9d5b81] Im(Mul(Sqrt(7), ConstI)) [29c095] Im(Add(1, Mul(Sqrt(7), ConstI))) [29c095] | 4 (#226) |
3.46410161513775458705489268301 | Sqrt(12) [9d5b81] Mul(2, Sqrt(3)) [68b73d 669765 2fabeb b95ffa 2806fd 52302f 30a054 edad97] Abs(Add(1, Mul(Sqrt(11), ConstI))) [a498dd] | 10 (#109) |
4.12310562561766054982140985597 | Sqrt(17) [9d5b81] Abs(Add(1, Mul(4, ConstI))) [6cbce8] Abs(Mul(Div(1, 2), Add(1, Mul(Sqrt(67), ConstI)))) [951017] | 3 (#282) |
4.35889894354067355223698198386 | Sqrt(19) [3ee358 9d5b81] Im(Mul(Sqrt(19), ConstI)) [3ee358] Im(Add(1, Mul(Sqrt(19), ConstI))) [3ee358] | 2 (#441) |
4.47213595499957939281834733746 | Sqrt(20) [9d5b81] Mul(2, Sqrt(5)) [cb6c9c] Abs(Add(1, Mul(Sqrt(19), ConstI))) [3ee358] | 3 (#283) |
5.65685424949238019520675489684 | Sqrt(32) [9d5b81] Mul(4, Sqrt(2)) [54c80d] Pow(2, Div(5, 2)) [3b175b] | 3 (#285) |
6.55743852430200065234410999764 | Sqrt(43) [9d5b81 5b108e] Im(Mul(Sqrt(43), ConstI)) [5b108e] Im(Add(1, Mul(Sqrt(43), ConstI))) [5b108e] | 2 (#444) |
354224848179261915075.000000000 | Fibonacci(100) [b506ad] 354224848179261915075 [b506ad] Fibonacci(Pow(10, 2)) [5818e3] | 2 (#446) |
1.38629436111989061883446424292 | Log(4) [d496b8] Mul(2, Log(2)) [177de7 5df909 2e40b8 89bed3 967bbb] Neg(Neg(Mul(2, Log(2)))) [89bed3] | 6 (#148) |
190569292.000000000000000000000 | 190569292 [856db2] PartitionsP(100) [856db2] PartitionsP(Pow(10, 2)) [9933df] | 2 (#447) |
0.0230957089661210338143102479065 | KeiperLiLambda(1) [d8d820 faf448] KeiperLiLambda(Pow(10, 0)) [706f66] Sub(Add(Div(ConstGamma, 2), 1), Div(Log(Mul(4, Pi)), 2)) [d8d820] Decimal("0.023095708966121033814310247906495291621932127152051") [706f66 faf448] | 3 (#290) |
0.253113553113553113553113553114 | Div(691, 2730) [aed6bd] Neg(BernoulliB(12)) [aed6bd] Neg(Neg(Div(691, 2730))) [aed6bd] | 1 (#1027) |
7.09215686274509803921568627451 | Div(3617, 510) [aed6bd] Neg(BernoulliB(16)) [aed6bd] Neg(Neg(Div(3617, 510))) [aed6bd] | 1 (#1028) |
529.124242424242424242424242424 | Div(174611, 330) [aed6bd] Neg(BernoulliB(20)) [aed6bd] Neg(Neg(Div(174611, 330))) [aed6bd] | 1 (#1030) |
86580.2531135531135531135531136 | Neg(BernoulliB(24)) [aed6bd] Div(236364091, 2730) [aed6bd] Neg(Neg(Div(236364091, 2730))) [aed6bd] | 1 (#1032) |
27298231.0678160919540229885057 | Neg(BernoulliB(28)) [aed6bd] Div(23749461029, 870) [aed6bd] Neg(Neg(Div(23749461029, 870))) [aed6bd] | 1 (#1034) |
15116315767.0921568627450980392 | Neg(BernoulliB(32)) [aed6bd] Div(7709321041217, 510) [aed6bd] Neg(Neg(Div(7709321041217, 510))) [aed6bd] | 1 (#1036) |
13711655205088.3327721590879486 | Neg(BernoulliB(36)) [aed6bd] Div(26315271553053477373, 1919190) [aed6bd] Neg(Neg(Div(26315271553053477373, 1919190))) [aed6bd] | 1 (#1038) |
19296579341940068.1486326681449 | Neg(BernoulliB(40)) [aed6bd] Div(261082718496449122051, 13530) [aed6bd] Neg(Neg(Div(261082718496449122051, 13530))) [aed6bd] | 1 (#1040) |
40338071854059455413.0768115942 | Neg(BernoulliB(44)) [aed6bd] Div(27833269579301024235023, 690) [aed6bd] Neg(Neg(Div(27833269579301024235023, 690))) [aed6bd] | 1 (#1042) |
120866265222965259346027.311937 | Neg(BernoulliB(48)) [aed6bd] Div(5609403368997817686249127547, 46410) [aed6bd] Neg(Neg(Div(5609403368997817686249127547, 46410))) [aed6bd] | 1 (#1044) |
115975.000000000000000000000000 | 115975 [4c6267] BellNumber(10) [4c6267] BellNumber(Pow(10, 1)) [7466a2] | 2 (#473) |
5056584744960000.00000000000000 | BarnesG(10) [5cb675] 5056584744960000 [5cb675] BarnesG(Pow(10, 1)) [dbc117] | 2 (#474) |
11.0000000000000000000000000000 | 11 [a0d13f a93679 7377c8 faf448 9b2f38 9933df b894a3 85e42e 9d5b81 b506ad ... 10 of 46 shown] Neg(-11) [20b6d2 e50a56] PartitionsP(6) [856db2] PrimeNumber(5) [a3035f] 4 of 4 expressions shown | 48 (#27) |
0.800000000000000000000000000000 | Div(4, 5) [adf83a] Decimal("0.8") [855201] Neg(Decimal("-0.8")) [3009a8] Neg(Re(Add(Decimal("-0.8"), Mul(Decimal("0.7"), ConstI)))) [3009a8] | 3 (#292) |
1.50000000000000000000000000000 | Div(3, 2) [4c0698 c6d6e2 fb7a63 42d727 72b5bd f9190b 9f2b18 4e4380 2806fd 3e71f4 ... 10 of 96 shown] Neg(Neg(Div(3, 2))) [1faf7a c85c2f 37ffb7 e93f43 618a9f 4e4380 771801 de8485 4c882a d4b12e ... 10 of 23 shown] Decimal("1.5") [8e06be 0c8084 ff0c9f 3009a8 9136b9] Neg(Decimal("-1.5")) [3009a8 0c8084 ff0c9f] 4 of 4 expressions shown | 101 (#16) |
28.0000000000000000000000000000 | 28 [a0d13f faf448 9933df 72f583 9d5b81 b506ad e93ca8 d496b8 b347d3 6d37c9 ... 10 of 26 shown] Neg(-28) [20b6d2 e50a56 a93679] Totient(29) [6d37c9] Totient(58) [6d37c9] 4 of 4 expressions shown | 29 (#42) |
13.0000000000000000000000000000 | 13 [a0d13f faf448 a4d6fc 9933df 85e42e 72f583 9d5b81 b506ad e93ca8 d496b8 ... 10 of 35 shown] Neg(-13) [e50a56] Fibonacci(7) [b506ad] PrimeNumber(6) [a3035f] 4 of 4 expressions shown | 36 (#37) |
72.0000000000000000000000000000 | 72 [a0d13f 6d37c9 29741c 0479f5 dc558b 0983d1 85e42e a3035f b506ad 856db2 ... 10 of 12 shown] Totient(73) [6d37c9] Totient(95) [6d37c9] Totient(91) [6d37c9] 4 of 4 expressions shown | 12 (#97) |
1.76274717403908605046521864996 | Mul(2, Log(Add(1, Sqrt(2)))) [54c80d] Log(Add(3, Mul(2, Sqrt(2)))) [fe4967] Sub(Log(Add(2, Sqrt(2))), Log(Sub(2, Sqrt(2)))) [8c368f] Integral(Mul(JacobiTheta(2, 0, Mul(ConstI, t)), JacobiTheta(4, 0, Mul(ConstI, t))), For(t, 0, Infinity)) [fe4967] | 3 (#302) |
0.881373587019543025232609324980 | CarlsonRC(2, 1) [a15c03] CarlsonRF(1, 1, 2) [4cd504] Log(Add(1, Sqrt(2))) [7ea1ad f47947 534335 6e9544 f5d489 303827 4d7098 25435b e04867 4cd504 ... 10 of 17 shown] IncompleteEllipticF(Div(Pi, 4), 1) [f5d489] 4 of 4 expressions shown | 17 (#74) |
3.62759872846843570118815651528 | Div(Mul(2, Pi), Sqrt(3)) [9ea739] Mul(Gamma(Div(1, 3)), Gamma(Div(2, 3))) [2371b9] EisensteinG(2, Exp(Div(Mul(Mul(2, Pi), ConstI), 3))) [9ea739] Re(EisensteinG(2, Exp(Div(Mul(Mul(2, Pi), ConstI), 3)))) [9ea739] | 2 (#494) |
0.205616758356028304559051895831 | Div(Pow(Pi, 2), 48) [208da7] Neg(Re(PolyLog(2, ConstI))) [1d65c2 208da7] Neg(Neg(Div(Pow(Pi, 2), 48))) [208da7] Neg(Re(Add(Neg(Div(Pow(Pi, 2), 48)), Mul(ConstCatalan, ConstI)))) [208da7] | 2 (#504) |
29.0000000000000000000000000000 | 29 [6d37c9 e5bd3c 338b5c dc558b faf448 9933df a3035f 9d5b81 b506ad 856db2 ... 10 of 18 shown] Neg(-29) [e50a56] PrimeNumber(10) [a3035f] PrimeNumber(Pow(10, 1)) [1e142c] 4 of 4 expressions shown | 19 (#69) |
44.0000000000000000000000000000 | 44 [a0d13f 6d37c9 dc558b a3035f 9d5b81 b506ad 856db2 e93ca8 71d9d9 799894 ... 10 of 14 shown] Neg(-44) [20b6d2] Totient(69) [6d37c9] Totient(92) [6d37c9] 4 of 4 expressions shown | 15 (#82) |
0.413629586924998359111922140616 | Im(EllipticK(Div(Add(1, Mul(Sqrt(3), ConstI)), 2))) [0abbe1] Neg(Im(EllipticK(Div(Sub(1, Mul(Sqrt(3), ConstI)), 2)))) [175b7a] Im(Div(Mul(Mul(Exp(Div(Mul(ConstI, Pi), 12)), Pow(3, Div(1, 4))), Pow(Gamma(Div(1, 3)), 3)), Mul(Pow(2, Div(7, 3)), Pi))) [0abbe1] Neg(Im(Div(Mul(Mul(Exp(Neg(Div(Mul(ConstI, Pi), 12))), Pow(3, Div(1, 4))), Pow(Gamma(Div(1, 3)), 3)), Mul(Pow(2, Div(7, 3)), Pi)))) [175b7a] | 2 (#519) |
52.0000000000000000000000000000 | 52 [a0d13f 6d37c9 618a9f dc558b a3035f 4c6267 b506ad 856db2 177218] Neg(-52) [20b6d2] Totient(53) [6d37c9] BellNumber(5) [4c6267] | 10 (#112) |
1.27362092087246188502596557114 | Abs(CarlsonRC(-1, 1)) [7ea1ad] Abs(CarlsonRC(1, -1)) [25435b] Abs(Sub(Div(Mul(Sqrt(2), Log(Add(1, Sqrt(2)))), 2), Mul(Div(Mul(Pi, Sqrt(2)), 4), ConstI))) [25435b] Abs(Sub(Div(Mul(Pi, Sqrt(2)), 4), Mul(Div(Mul(Sqrt(2), Log(Add(1, Sqrt(2)))), 2), ConstI))) [7ea1ad] | 2 (#534) |
0.643805509807655071153017462540 | CarlsonRD(2, 2, 1) [eda57d] CarlsonRJ(1, 2, 2, 1) [a1414f] CarlsonRJ(1, 1, 1, 2) [b1c84e] Sub(3, Div(Mul(3, Pi), 4)) [b1c84e eda57d a1414f] | 3 (#323) |
1.96654316571908985784862969242 | Div(Mul(3, Pow(Gamma(Div(1, 4)), 2)), Mul(8, Sqrt(Mul(2, Pi)))) [62b0c4 2dcf0c] Div(Mul(Mul(3, Sqrt(2)), Pow(Gamma(Div(1, 4)), 2)), Mul(16, Sqrt(Pi))) [c05ed8 060366] Re(Mul(Div(Mul(3, Pow(Gamma(Div(1, 4)), 2)), Mul(8, Sqrt(Mul(2, Pi)))), Sub(1, ConstI))) [62b0c4 2dcf0c] Neg(Im(Mul(Div(Mul(3, Pow(Gamma(Div(1, 4)), 2)), Mul(8, Sqrt(Mul(2, Pi)))), Sub(1, ConstI)))) [62b0c4 2dcf0c] | 4 (#243) |
2.78111201595205787765077552079 | CarlsonRJ(0, ConstI, Neg(ConstI), 1) [1eaaed] Re(CarlsonRJ(0, ConstI, Neg(ConstI), 1)) [1eaaed] Div(Mul(3, Pow(Gamma(Div(1, 4)), 2)), Mul(8, Sqrt(Pi))) [1eaaed] Abs(Mul(Div(Mul(3, Pow(Gamma(Div(1, 4)), 2)), Mul(8, Sqrt(Mul(2, Pi)))), Sub(1, ConstI))) [62b0c4 2dcf0c] | 3 (#324) |
1.21741893010517288504551506019 | Neg(Re(CarlsonRD(1, -1, -1))) [3047b1] Neg(Re(CarlsonRJ(1, -1, -1, -1))) [303827] Neg(Sub(Neg(Div(3, 4)), Div(Mul(Mul(3, Sqrt(2)), Log(Add(1, Sqrt(2)))), 8))) [303827 3047b1] Neg(Re(Add(Sub(Neg(Div(3, 4)), Div(Mul(Mul(3, Sqrt(2)), Log(Add(1, Sqrt(2)))), 8)), Div(Mul(Mul(Mul(3, Sqrt(2)), Pi), ConstI), 16)))) [303827 3047b1] | 2 (#553) |
0.833040550904693671315477685636 | Im(CarlsonRD(1, -1, -1)) [3047b1] Im(CarlsonRJ(1, -1, -1, -1)) [303827] Im(Div(Mul(Mul(Mul(3, Sqrt(2)), Pi), ConstI), 16)) [303827 3047b1] Im(Add(Sub(Neg(Div(3, 4)), Div(Mul(Mul(3, Sqrt(2)), Log(Add(1, Sqrt(2)))), 8)), Div(Mul(Mul(Mul(3, Sqrt(2)), Pi), ConstI), 16))) [303827 3047b1] | 2 (#554) |
0.367879441171442321595523770161 | Exp(-1) [41ece5 9be916 17eaad 8d486c ee86fb 44ad09 55498b a34260 72b6ca 0d3b91 ... 10 of 14 shown] Div(1, ConstE) [a172c7 636929 b93d09 30bd5b 58c19a 050c46 314807 d09380] Neg(Neg(Exp(-1))) [41ece5 9be916 17eaad 8d486c ee86fb 44ad09 55498b a34260 72b6ca 0d3b91 ... 10 of 14 shown] Neg(Neg(Div(1, ConstE))) [a172c7 636929 b93d09 314807 d09380] 4 of 4 expressions shown | 22 (#62) |
56.0000000000000000000000000000 | 56 [a0d13f e83059 6d37c9 29741c fb5d88 dc558b 85e42e a3035f b506ad 856db2 ... 10 of 13 shown] Neg(-56) [20b6d2] Totient(87) [6d37c9] PartitionsP(11) [856db2] 4 of 4 expressions shown | 14 (#90) |
32768.0000000000000000000000000 | 32768 [20b6d2 fd8310] Pow(32, 3) [a498dd] Neg(Neg(Pow(32, 3))) [a498dd] Neg(ModularJ(Mul(Div(1, 2), Add(1, Mul(Sqrt(11), ConstI))))) [a498dd] | 3 (#340) |
0.0833333333333333333333333333333 | Div(1, 12) [b64782 9ce413 324483 3544a0 e50a56 6f8e14 ea26d4 4a3612 675f23] Neg(RiemannZeta(-1)) [e50a56] Neg(RiemannZeta(-13)) [e50a56] Neg(Neg(Div(1, 12))) [e50a56] | 9 (#119) |
0.258819403792806798405183560189 | Neg(AiryAi(0, 1)) [807917 20e530 01bbb6] Div(1, Mul(Pow(3, Div(1, 3)), Gamma(Div(1, 3)))) [807917] Neg(Neg(Div(1, Mul(Pow(3, Div(1, 3)), Gamma(Div(1, 3)))))) [807917] | 3 (#421) |
1.08643481121330801457531612151 | JacobiTheta(3, 0, ConstI) [390158 8356db f12e20 7d7c65 cb6c9c 72f583 2f3ed3 e2bc80 d15f11 4c8873 ... 10 of 29 shown] Div(Pow(Pi, Div(1, 4)), Gamma(Div(3, 4))) [d15f11] Div(Gamma(Div(1, 4)), Mul(Sqrt(2), Pow(Pi, Div(3, 4)))) [1403b5] 4 of 4 expressions shown | 29 (#44) |
3375.00000000000000000000000000 | 3375 [20b6d2] Pow(15, 3) [29c095] Neg(Neg(Pow(15, 3))) [29c095] Neg(ModularJ(Mul(Div(1, 2), Add(1, Mul(Sqrt(7), ConstI))))) [29c095] | 2 (#708) |
884736.000000000000000000000000 | 884736 [20b6d2] Pow(96, 3) [3ee358] Neg(Neg(Pow(96, 3))) [3ee358] Neg(ModularJ(Mul(Div(1, 2), Add(1, Mul(Sqrt(19), ConstI))))) [3ee358] | 2 (#709) |
884736000.000000000000000000000 | 884736000 [20b6d2] Pow(960, 3) [5b108e] Neg(Neg(Pow(960, 3))) [5b108e] Neg(ModularJ(Mul(Div(1, 2), Add(1, Mul(Sqrt(43), ConstI))))) [5b108e] | 2 (#710) |
147197952000.000000000000000000 | 147197952000 [20b6d2] Pow(5280, 3) [951017] Neg(Neg(Pow(5280, 3))) [951017] Neg(ModularJ(Mul(Div(1, 2), Add(1, Mul(Sqrt(67), ConstI))))) [951017] | 2 (#712) |
0.587785252292473129168705954639 | Im(Exp(Div(Mul(Pi, ConstI), 5))) [7a56c2] Im(Exp(Div(Mul(Mul(4, Pi), ConstI), 5))) [7a56c2] Neg(Im(Neg(Exp(Div(Mul(Pi, ConstI), 5))))) [7a56c2] Neg(Im(Neg(Exp(Div(Mul(Mul(4, Pi), ConstI), 5))))) [7a56c2] | 1 (#3069) |
0.951056516295153572116439333379 | Im(Exp(Div(Mul(Mul(3, Pi), ConstI), 5))) [7a56c2] Im(Exp(Div(Mul(Mul(2, Pi), ConstI), 5))) [7a56c2] Neg(Im(Neg(Exp(Div(Mul(Mul(2, Pi), ConstI), 5))))) [7a56c2] Neg(Im(Neg(Exp(Div(Mul(Mul(3, Pi), ConstI), 5))))) [7a56c2] | 1 (#3070) |
12.5663706143591729538505735331 | Mul(4, Pi) [ce66a9 dbf388 47acde dc507f 0479f5 d6703a 7a56c2 0d8639 d637c5 d8d820 ... 10 of 14 shown] Im(Mul(Mul(4, Pi), ConstI)) [dbf388 7a56c2 d637c5 37e644 ebc673] 3 of 3 expressions shown | 14 (#83) |
0.159154943091895335768883763373 | Div(1, Mul(2, Pi)) [541e2e 47acde d1a0ec] Im(Div(ConstI, Mul(2, Pi))) [1c25d3 82b410] | 5 (#188) |
2.46740110027233965470862274997 | Div(Pow(Pi, 2), 4) [47acde] Pow(Div(Pi, 2), 2) [efebb8] | 2 (#435) |
97.4090910340024372364403326887 | Pow(Pi, 4) [2d4828 47acde 2251c6 7cb17f 9bf21b 4064f5 a4f9c9 4a1b00 33690e] DigammaFunction(Div(1, 2), 3) [2251c6] | 9 (#114) |
1.77245385090551602729816748334 | Sqrt(Pi) [fae9d3 47acde cc22bf e30d7e b5bd5d 4b040d e1797b 2aaba8 1eaaed 6582c4 ... 10 of 35 shown] Gamma(Div(1, 2)) [8fab22 f826a6] 3 of 3 expressions shown | 36 (#36) |
2.50662827463100050241576528481 | Sqrt(Mul(2, Pi)) [84f403 47acde 630eca ace837 d3baaf 62b0c4 28237a 53026a e54e61 3f1547 ... 10 of 17 shown] Pow(Mul(2, Pi), Div(1, 2)) [931d89 2a47d7 32e162 6d0a95 80f7dc b7fec0 a0ca3e] 3 of 3 expressions shown | 24 (#55) |
0.918938533204672741780329736406 | Div(Log(Mul(2, Pi)), 2) [37a95a 99a9c6 2398a1 3544a0 f3b870 4a3612] Mul(Div(1, 2), Log(Mul(2, Pi))) [47acde f50c74] | 8 (#122) |
23.1406926327792690057290863679 | Exp(Pi) [042551 47acde] Where(Mul(32, Product(Pow(Div(a_(Add(n, 1)), a_(n)), Pow(2, Sub(1, n))), For(n, 0, Infinity))), Def(Tuple(a_(n), b_(n)), AGMSequence(n, 1, Div(1, Sqrt(2))))) [042551] | 2 (#437) |
0.207879576350761908546955619835 | Pow(ConstI, ConstI) [a39534] Exp(Neg(Div(Pi, 2))) [47acde a39534] | 2 (#438) |
2.44948974278317809819728407471 | Sqrt(6) [c60033 9d5b81 799b5e] Im(Mul(Sqrt(6), ConstI)) [c60033 799b5e] | 3 (#280) |
3.60555127546398929311922126747 | Sqrt(13) [9d5b81] Abs(Add(2, Mul(3, ConstI))) [0e2bcb] | 2 (#440) |
4.24264068711928514640506617263 | Sqrt(18) [9d5b81] Mul(3, Sqrt(2)) [669765 f47947 534335 9f2b18 62b0c4 303827 060366 e04867 324483 63644d ... 10 of 18 shown] 3 of 3 expressions shown | 19 (#66) |
5.19615242270663188058233902452 | Sqrt(27) [d83109 9d5b81] Mul(3, Sqrt(3)) [340936] | 3 (#284) |
6.08276253029821968899968424520 | Sqrt(37) [9d5b81] Abs(Add(1, Mul(6, ConstI))) [5384f3] | 2 (#442) |
6.40312423743284868648821767462 | Sqrt(41) [9d5b81] Abs(Mul(Div(1, 2), Add(1, Mul(Sqrt(163), ConstI)))) [1cb24e] | 2 (#443) |
6.63324958071079969822986547334 | Sqrt(44) [9d5b81] Abs(Add(1, Mul(Sqrt(43), ConstI))) [5b108e] | 2 (#445) |
6.92820323027550917410978536602 | Sqrt(48) [9d5b81] Mul(4, Sqrt(3)) [921d61 bb88c8 44d300 b95ffa] | 5 (#190) |
0.693147180559945309417232121458 | Log(2) [8c368f 177de7 e4cdf1 bad5d9 5df909 dad27b 4f3d2b d496b8 2e40b8 140815 ... 10 of 17 shown] Neg(Neg(Log(2))) [4f3d2b] 3 of 3 expressions shown | 17 (#72) |
2.07944154167983592825169636437 | Log(8) [d496b8] Mul(3, Log(2)) [7ec4f0 f93bae] | 3 (#286) |
2.77258872223978123766892848583 | Log(16) [d496b8] Mul(4, Log(2)) [8c368f e4cdf1] | 3 (#287) |
3.29583686600432907418573571077 | Log(27) [d496b8] Mul(3, Log(3)) [45a969 98f642 177de7 967bbb] | 5 (#191) |
1.01734306198444913971451792979 | RiemannZeta(6) [9923b7 7cb17f e93ca8 3a5167 ef2c71] Mul(Div(1, 945), Pow(Pi, 6)) [7cb17f] | 5 (#192) |
1.00407735619794433937868523851 | RiemannZeta(8) [e93ca8 7cb17f] Mul(Div(1, 9450), Pow(Pi, 8)) [7cb17f] | 2 (#448) |
1.00099457512781808533714595890 | RiemannZeta(10) [e93ca8 7cb17f] Mul(Div(1, 93555), Pow(Pi, 10)) [7cb17f] | 2 (#449) |
1.00024608655330804829863799805 | RiemannZeta(12) [e93ca8 7cb17f] Mul(Div(691, 638512875), Pow(Pi, 12)) [7cb17f] | 2 (#450) |
1.00006124813505870482925854511 | RiemannZeta(14) [e93ca8 7cb17f] Mul(Div(2, 18243225), Pow(Pi, 14)) [7cb17f] | 2 (#451) |
1.00001528225940865187173257149 | RiemannZeta(16) [e93ca8 7cb17f] Mul(Div(3617, 325641566250), Pow(Pi, 16)) [7cb17f] | 2 (#452) |
1.00000381729326499983985646164 | RiemannZeta(18) [e93ca8 7cb17f] Mul(Div(43867, 38979295480125), Pow(Pi, 18)) [7cb17f] | 2 (#453) |
1.00000095396203387279611315204 | RiemannZeta(20) [e93ca8 7cb17f] Mul(Div(174611, 1531329465290625), Pow(Pi, 20)) [7cb17f] | 2 (#454) |
1.00000023845050272773299000365 | RiemannZeta(22) [e93ca8 7cb17f] Mul(Div(155366, 13447856940643125), Pow(Pi, 22)) [7cb17f] | 2 (#455) |
1.00000005960818905125947961244 | RiemannZeta(24) [e93ca8 7cb17f] Mul(Div(236364091, 201919571963756521875), Pow(Pi, 24)) [7cb17f] | 2 (#456) |
1.00000001490155482836504123466 | RiemannZeta(26) [e93ca8 7cb17f] Mul(Div(1315862, 11094481976030578125), Pow(Pi, 26)) [7cb17f] | 2 (#457) |
1.00000000372533402478845705482 | RiemannZeta(28) [e93ca8 7cb17f] Mul(Div(6785560294, 564653660170076273671875), Pow(Pi, 28)) [7cb17f] | 2 (#458) |
1.00000000093132743241966818287 | RiemannZeta(30) [e93ca8 7cb17f] Mul(Div(6892673020804, 5660878804669082674070015625), Pow(Pi, 30)) [7cb17f] | 2 (#459) |
1.00000000023283118336765054920 | RiemannZeta(32) [e93ca8 7cb17f] Mul(Div(7709321041217, 62490220571022341207266406250), Pow(Pi, 32)) [7cb17f] | 2 (#460) |
1.00000000005820772087902700889 | RiemannZeta(34) [e93ca8 7cb17f] Mul(Div(151628697551, 12130454581433748587292890625), Pow(Pi, 34)) [7cb17f] | 2 (#461) |
1.00000000001455192189104198424 | RiemannZeta(36) [e93ca8 7cb17f] Mul(Div(26315271553053477373, 20777977561866588586487628662044921875), Pow(Pi, 36)) [7cb17f] | 2 (#462) |
1.00000000000363797954737865119 | RiemannZeta(38) [e93ca8 7cb17f] Mul(Div(308420411983322, 2403467618492375776343276883984375), Pow(Pi, 38)) [7cb17f] | 2 (#463) |
1.00000000000090949478402638893 | RiemannZeta(40) [e93ca8 7cb17f] Mul(Div(261082718496449122051, 20080431172289638826798401128390556640625), Pow(Pi, 40)) [7cb17f] | 2 (#464) |
14.1347251417346937904572519836 | Im(RiemannZetaZero(1)) [71d9d9 945fa5] Im(RiemannZetaZero(Pow(10, 0))) [2e1cc7] Decimal("14.134725141734693790457251983562470270784257115699") [71d9d9 945fa5 2e1cc7] | 3 (#289) |
49.7738324776723021819167846786 | Im(RiemannZetaZero(10)) [71d9d9] Im(RiemannZetaZero(Pow(10, 1))) [2e1cc7] Decimal("49.773832477672302181916784678563724057723178299677") [71d9d9 2e1cc7] | 2 (#465) |
0.227933936319315774369303405737 | KeiperLiLambda(10) [faf448] KeiperLiLambda(Pow(10, 1)) [706f66] Decimal("0.22793393631931577436930340573684453380748385942738") [706f66 faf448] | 2 (#467) |
0.0728158454836767248605863758749 | Neg(StieltjesGamma(1)) [e5bd3c 70a705] Neg(StieltjesGamma(Pow(10, 0))) [569d5c] Neg(Decimal("-0.072815845483676724860586375874901319137736338334338")) [e5bd3c 569d5c] | 3 (#291) |
0.000205332814909064794683722289237 | StieltjesGamma(10) [e5bd3c] StieltjesGamma(Pow(10, 1)) [569d5c] Decimal("0.00020533281490906479468372228923706530295985377416676") [e5bd3c 569d5c] | 2 (#468) |
0.166666666666666666666666666667 | Div(1, 6) [669765 2fabeb fba07c 177de7 c03f78 688efb 82b410 62ffb3 588889 5f0adb ... 10 of 19 shown] BernoulliB(2) [aed6bd] 3 of 3 expressions shown | 19 (#67) |
0.0238095238095238095238095238095 | Div(1, 42) [588889 aed6bd] BernoulliB(6) [aed6bd] | 2 (#470) |
0.0757575757575757575757575757576 | Div(5, 66) [588889 aed6bd] BernoulliB(10) [aed6bd] | 2 (#471) |
1.16666666666666666666666666667 | Div(7, 6) [588889 aed6bd] BernoulliB(14) [aed6bd] | 2 (#472) |
54.9711779448621553884711779449 | BernoulliB(18) [aed6bd] Div(43867, 798) [aed6bd] | 1 (#1029) |
6192.12318840579710144927536232 | BernoulliB(22) [aed6bd] Div(854513, 138) [aed6bd] | 1 (#1031) |
1425517.16666666666666666666667 | BernoulliB(26) [aed6bd] Div(8553103, 6) [aed6bd] | 1 (#1033) |
601580873.900642368384303868175 | BernoulliB(30) [aed6bd] Div(8615841276005, 14322) [aed6bd] | 1 (#1035) |
429614643061.166666666666666667 | BernoulliB(34) [aed6bd] Div(2577687858367, 6) [aed6bd] | 1 (#1037) |
488332318973593.166666666666667 | BernoulliB(38) [aed6bd] Div(2929993913841559, 6) [aed6bd] | 1 (#1039) |
841693047573682615.000553709856 | BernoulliB(42) [aed6bd] Div(1520097643918070802691, 1806) [aed6bd] | 1 (#1041) |
2115074863808199160560.14539007 | BernoulliB(46) [aed6bd] Div(596451111593912163277961, 282) [aed6bd] | 1 (#1043) |
7500866746076964366855720.07576 | BernoulliB(50) [aed6bd] Div(495057205241079648212477525, 66) [aed6bd] | 1 (#1045) |
1.46163214496836234126265954233 | DigammaFunctionZero(0) [3c4f5f 4fdf65 950e5a] Decimal("1.46163214496836234126265954233") [1bbbc7] | 4 (#227) |
25.0000000000000000000000000000 | 25 [6d37c9 5404ce e5bd3c 338b5c bd3faa dc558b faf448 9933df a3035f 9d5b81 ... 10 of 20 shown] Neg(-25) [e50a56 855201] PrimePi(Pow(10, 2)) [5404ce] 3 of 3 expressions shown | 22 (#58) |
1.11803398874989484820458683437 | Div(Sqrt(5), 2) [d0d91a ae9d30 223ce1] Abs(Add(1, Div(ConstI, 2))) [583bf9 324483] Sum(Div(1, Add(Fibonacci(Add(Mul(2, n), 1)), 1)), For(n, 0, Infinity)) [ae9d30] | 5 (#193) |
0.644934066848226436472415166646 | HurwitzZeta(2, 2) [ac8d3c] DigammaFunction(2, 1) [fa0292] Sub(Div(Pow(Pi, 2), 6), 1) [fa0292 ac8d3c] | 2 (#476) |
17.1973291545071107392713191193 | HurwitzZeta(2, Div(1, 4)) [e85723 3e82c3] DigammaFunction(Div(1, 4), 1) [8ee7c9 2744d4 807c7d] Add(Pow(Pi, 2), Mul(8, ConstCatalan)) [3e82c3 807c7d] | 5 (#196) |
2.54187964767160649839766288042 | HurwitzZeta(2, Div(3, 4)) [951f86 e85723] DigammaFunction(Div(3, 4), 1) [d2f9fb] Sub(Pow(Pi, 2), Mul(8, ConstCatalan)) [d2f9fb 951f86] | 3 (#294) |
2.71828182845904523536028747135 | ConstE [ce66a9 699c83 b93d09 99ff4c ea26d4 5d6f99 dc507f a1e634 30bd5b e50532 ... 10 of 32 shown] Exp(1) [9a944c] "Indirect use of e: Exp(...)" [848d97 52d827 bcdfc6 83566f 235d0d 21851b 2ea614 a0ba58 cfb999 35403b ... 10 of 362 shown] 3 of 3 expressions shown | 389 (#7) |
48.0000000000000000000000000000 | 48 [8332d8 208da7 6d37c9 dc558b 85e42e a3035f 9d5b81 b506ad 856db2 e93ca8 ... 10 of 15 shown] Neg(-48) [20b6d2] Totient(65) [6d37c9] 3 of 3 expressions shown | 16 (#77) |
9.00000000000000000000000000000 | 9 [ce66a9 a0d13f a93679 8356db faf448 9933df 0c7de4 85e42e 9d5b81 b506ad ... 10 of 61 shown] Neg(-9) [e50a56] Im(Mul(9, ConstI)) [8356db] 3 of 3 expressions shown | 62 (#21) |
4.44288293815836624701588099006 | Mul(Sqrt(2), Pi) [6e9544] Mul(Pi, Sqrt(2)) [7ea1ad 124d02 afd27a 25435b] Mul(Gamma(Div(1, 4)), Gamma(Div(3, 4))) [63ba30] | 6 (#151) |
1.19814023473559220743992249228 | AGM(1, Sqrt(2)) [0d9352 7b362f dabb47] Div(1, Pow(JacobiTheta(4, 0, ConstI), 2)) [7b362f] Div(Mul(2, Sqrt(2), Pow(Pi, Div(3, 2))), Pow(Gamma(Div(1, 4)), 2)) [0d9352] | 3 (#304) |
1.27323954473516268615107010698 | Im(Div(Mul(4, ConstI), Pi)) [38b4f3] Neg(Im(Neg(Div(Mul(4, ConstI), Pi)))) [38b4f3] Hypergeometric2F1(Neg(Div(1, 2)), Neg(Div(1, 2)), 1, 1) [c6c108] | 2 (#496) |
0.826993343132688074266989747469 | Sinc(Div(Pi, 3)) [340936] Div(Mul(3, Sqrt(3)), Mul(2, Pi)) [340936] Hypergeometric2F1(Neg(Div(1, 3)), Div(1, 3), 1, 1) [68b73d] | 2 (#498) |
262537412640768000.000000000000 | Pow(640320, 3) [1cb24e fdc3a3] Neg(Neg(Pow(640320, 3))) [1cb24e] Neg(ModularJ(Mul(Div(1, 2), Add(1, Mul(Sqrt(163), ConstI))))) [1cb24e] | 2 (#499) |
12.7671453348037046617109520098 | Sqrt(163) [1cb24e fdc3a3] Im(Mul(Sqrt(163), ConstI)) [1cb24e] Im(Add(1, Mul(Sqrt(163), ConstI))) [1cb24e] | 2 (#500) |
17.0000000000000000000000000000 | 17 [faf448 9933df 9d5b81 b506ad e93ca8 5404ce d496b8 35c85f d898b9 6d37c9 ... 10 of 24 shown] Neg(-17) [e50a56] PrimeNumber(7) [a3035f] 3 of 3 expressions shown | 25 (#54) |
19.0000000000000000000000000000 | 19 [faf448 9933df 9d5b81 b506ad e93ca8 5404ce d496b8 6d37c9 5818e3 e5bd3c ... 10 of 24 shown] Neg(-19) [20b6d2 e50a56] PrimeNumber(8) [a3035f] 3 of 3 expressions shown | 26 (#52) |
21.0000000000000000000000000000 | 21 [a0d13f faf448 9933df 9d5b81 b506ad e93ca8 5404ce d496b8 6d37c9 e5bd3c ... 10 of 26 shown] Neg(-21) [e50a56 a93679] Fibonacci(8) [b506ad] 3 of 3 expressions shown | 28 (#46) |
23.0000000000000000000000000000 | 23 [6d37c9 5404ce e5bd3c 338b5c dc558b a1e634 faf448 9933df a3035f 9d5b81 ... 10 of 20 shown] Neg(-23) [20b6d2 e50a56] PrimeNumber(9) [a3035f] 3 of 3 expressions shown | 22 (#59) |
31.0000000000000000000000000000 | 31 [6d37c9 dc558b a3035f e93ca8 9d5b81 b506ad 856db2 71d9d9 177218 4c6267 ... 10 of 13 shown] Neg(-31) [20b6d2] PrimeNumber(11) [a3035f] 3 of 3 expressions shown | 14 (#87) |
43.0000000000000000000000000000 | 43 [5b108e 6d37c9 dc558b a3035f e93ca8 9d5b81 b506ad 856db2 71d9d9 177218 ... 10 of 12 shown] Neg(-43) [20b6d2 0983d1] PrimeNumber(14) [a3035f] 3 of 3 expressions shown | 14 (#89) |
45.0000000000000000000000000000 | 45 [a0d13f f88455 6d37c9 618a9f fb5d88 dc558b 6ade92 a3035f 9d5b81 b506ad ... 10 of 18 shown] Neg(-45) [a93679] Im(Mul(45, ConstI)) [6ade92] 3 of 3 expressions shown | 19 (#70) |
46.0000000000000000000000000000 | 46 [6d37c9 dc558b a3035f e93ca8 9d5b81 b506ad 856db2 71d9d9 177218 d496b8 ... 10 of 11 shown] Totient(94) [6d37c9] Totient(47) [6d37c9] 3 of 3 expressions shown | 11 (#105) |
47.0000000000000000000000000000 | 47 [6d37c9 dc558b a3035f e93ca8 9d5b81 b506ad 856db2 71d9d9 177218 d496b8 ... 10 of 11 shown] Neg(-47) [20b6d2] PrimeNumber(15) [a3035f] 3 of 3 expressions shown | 12 (#100) |
0.954929658551372014613302580235 | Div(3, Pi) [45740a a691b3] Sinc(Div(Pi, 6)) [45740a] EisensteinE(2, ConstI) [a691b3] | 2 (#508) |
2.50000000000000000000000000000 | Div(5, 2) [d3b45d 9522c6 588889 e2035a 6636f2 3b175b ad8a9a 9b868d c2c002 50f72f] Neg(Neg(Div(5, 2))) [d3b45d 9522c6 e2035a 6636f2 ad8a9a 9b868d c2c002] Decimal("2.5") [d9a7a3] | 11 (#106) |
1.17809724509617246442349126873 | Div(Mul(3, Pi), 8) [be0f54 4d2c10 397051 c6c92a] Atan(Add(Sqrt(2), 1)) [c6c92a] Integral(Pow(Sinc(x), 3), For(x, 0, Infinity)) [be0f54] | 4 (#232) |
64.0000000000000000000000000000 | 64 [8be46c 0eb699 6d37c9 dc558b 545987 47b181 37fb5f 85e42e fd8310 a3035f ... 10 of 16 shown] Neg(-64) [20b6d2] Totient(85) [6d37c9] 3 of 3 expressions shown | 17 (#76) |
11.1366559936634156905696359642 | Mul(2, Pow(Pi, Div(3, 2))) [9b0385 e3896e] Abs(Mul(Mul(Sqrt(2), Sub(1, ConstI)), Pow(Pi, Div(3, 2)))) [5174ea] Abs(Mul(Mul(Sqrt(2), Add(1, ConstI)), Pow(Pi, Div(3, 2)))) [69d0a3] | 4 (#235) |
1.91009889451385600895238104109 | EllipticE(-1) [9f3474] IncompleteEllipticE(Div(Pi, 2), -1) [2573ba] Mul(Sqrt(2), Add(Div(Pow(Gamma(Div(1, 4)), 2), Mul(8, Sqrt(Pi))), Div(Pow(Pi, Div(3, 2)), Pow(Gamma(Div(1, 4)), 2)))) [2573ba 9f3474] | 2 (#514) |
0.423606542396989543303249561741 | Abs(CarlsonRG(0, 1, -1)) [9e30e7] Div(Pow(Pi, Div(3, 2)), Pow(Gamma(Div(1, 4)), 2)) [2573ba 3b272e 9f3474] Abs(Mul(Div(Mul(Sqrt(2), Pow(Pi, Div(3, 2))), Mul(2, Pow(Gamma(Div(1, 4)), 2))), Add(1, ConstI))) [9e30e7] | 4 (#238) |
1.58255172722371591183313507107 | CarlsonRF(0, 1, Sub(Mul(12, Sqrt(2)), 16)) [e30d7e] EllipticK(Pow(Sub(3, Mul(2, Sqrt(2))), 2)) [2991b5] Div(Mul(Add(2, Sqrt(2)), Pow(Gamma(Div(1, 4)), 2)), Mul(16, Sqrt(Pi))) [2991b5 e30d7e] | 2 (#515) |
0.0294372515228594143797353094836 | Sub(17, Mul(12, Sqrt(2))) [35c85f] ModularLambda(Mul(2, ConstI)) [35c85f] Pow(Sub(3, Mul(2, Sqrt(2))), 2) [2991b5] | 2 (#516) |
25.3027987703796493658818642560 | Mul(Pow(3, Div(1, 4)), Pow(Gamma(Div(1, 3)), 3)) [40a376] Abs(Mul(Mul(Exp(Div(Mul(ConstI, Pi), 12)), Pow(3, Div(1, 4))), Pow(Gamma(Div(1, 3)), 3))) [0abbe1] Abs(Mul(Mul(Exp(Neg(Div(Mul(ConstI, Pi), 12))), Pow(3, Div(1, 4))), Pow(Gamma(Div(1, 3)), 3))) [175b7a] | 3 (#312) |
1.31607401295249246081921890180 | Pow(3, Div(1, 4)) [40a376 175b7a 0abbe1] Abs(Mul(Exp(Div(Mul(ConstI, Pi), 12)), Pow(3, Div(1, 4)))) [0abbe1] Abs(Mul(Exp(Neg(Div(Mul(ConstI, Pi), 12))), Pow(3, Div(1, 4)))) [175b7a] | 3 (#313) |
0.965925826289068286749743199729 | Re(Exp(Div(Mul(Pi, ConstI), 12))) [1bae52] Re(Exp(Div(Mul(ConstI, Pi), 12))) [0abbe1] Re(Exp(Neg(Div(Mul(ConstI, Pi), 12)))) [175b7a] | 3 (#314) |
0.258819045102520762348898837624 | Im(Exp(Div(Mul(ConstI, Pi), 12))) [0abbe1] Im(Exp(Div(Mul(Pi, ConstI), 12))) [1bae52] Neg(Im(Exp(Neg(Div(Mul(ConstI, Pi), 12))))) [175b7a] | 3 (#315) |
0.842875177406298021435601828900 | Div(EllipticK(Div(1, 4)), 2) [aac129] IncompleteEllipticF(Div(Pi, 6), 4) [aac129] Re(IncompleteEllipticF(Div(Pi, 6), 4)) [aac129] | 1 (#1246) |
0.406298886459960246612785047283 | IncompleteEllipticE(Div(Pi, 6), 4) [eba27c] Re(IncompleteEllipticE(Div(Pi, 6), 4)) [eba27c] Sub(Mul(2, EllipticE(Div(1, 4))), Mul(Div(3, 2), EllipticK(Div(1, 4)))) [eba27c] | 1 (#1247) |
0.955049447256928004476190520543 | CarlsonRG(0, 1, 2) [84f403] Add(Div(Pow(Gamma(Div(1, 4)), 2), Mul(8, Sqrt(Mul(2, Pi)))), Div(Pow(Pi, Div(3, 2)), Mul(Sqrt(2), Pow(Gamma(Div(1, 4)), 2)))) [3f1547 84f403] Mul(Add(Div(Pow(Gamma(Div(1, 4)), 2), Mul(8, Sqrt(Mul(2, Pi)))), Div(Pow(Pi, Div(3, 2)), Mul(Sqrt(2), Pow(Gamma(Div(1, 4)), 2))))) [3f1547] | 2 (#538) |
0.522800417498986502495294888625 | CarlsonRD(1, 1, 2) [f47947] CarlsonRJ(1, 1, 2, 2) [a9f190] Sub(Mul(3, Log(Add(1, Sqrt(2)))), Div(Mul(3, Sqrt(2)), 2)) [f47947 a9f190] | 2 (#540) |
0.428097245096172464423491268730 | CarlsonRD(1, 2, 2) [4d2c10] CarlsonRJ(1, 2, 2, 2) [397051] Sub(Div(Mul(3, Pi), 8), Div(3, 4)) [4d2c10 397051] | 2 (#543) |
1.79721035210338831115988373842 | CarlsonRD(0, 2, 1) [63644d] CarlsonRJ(0, 1, 2, 1) [9f2b18] Div(Mul(Mul(3, Sqrt(2)), Pow(Pi, Div(3, 2))), Pow(Gamma(Div(1, 4)), 2)) [63644d 9f2b18] | 2 (#544) |
0.898605176051694155579941869210 | Div(Mul(Mul(3, Sqrt(2)), Pow(Pi, Div(3, 2))), Mul(2, Pow(Gamma(Div(1, 4)), 2))) [62b0c4 c05ed8 060366 2dcf0c] Re(Mul(Div(Mul(Mul(3, Sqrt(2)), Pow(Pi, Div(3, 2))), Mul(2, Pow(Gamma(Div(1, 4)), 2))), Add(1, ConstI))) [62b0c4 2dcf0c] Im(Mul(Div(Mul(Mul(3, Sqrt(2)), Pow(Pi, Div(3, 2))), Mul(2, Pow(Gamma(Div(1, 4)), 2))), Add(1, ConstI))) [62b0c4 2dcf0c] | 4 (#244) |
1.39055600797602893882538776040 | CarlsonRJ(0, 1, 2, Sqrt(2)) [7f8a58] Re(CarlsonRJ(0, 1, 2, Sqrt(2))) [7f8a58] Div(Mul(3, Pow(Gamma(Div(1, 4)), 2)), Mul(16, Sqrt(Pi))) [7f8a58] | 1 (#1263) |
2.86514834177078401342857156163 | Neg(Im(CarlsonRD(0, -1, 1))) [2dcf0c] Neg(Im(CarlsonRJ(0, -1, 1, 1))) [62b0c4] Neg(Im(Sub(Mul(Div(Mul(3, Pow(Gamma(Div(1, 4)), 2)), Mul(8, Sqrt(Mul(2, Pi)))), Sub(1, ConstI)), Mul(Div(Mul(Mul(3, Sqrt(2)), Pow(Pi, Div(3, 2))), Mul(2, Pow(Gamma(Div(1, 4)), 2))), Add(1, ConstI))))) [62b0c4 2dcf0c] | 2 (#546) |
3.05770609609993614343993760883 | Abs(CarlsonRD(0, -1, 1)) [2dcf0c] Abs(CarlsonRJ(0, -1, 1, 1)) [62b0c4] Abs(Sub(Mul(Div(Mul(3, Pow(Gamma(Div(1, 4)), 2)), Mul(8, Sqrt(Mul(2, Pi)))), Sub(1, ConstI)), Mul(Div(Mul(Mul(3, Sqrt(2)), Pow(Pi, Div(3, 2))), Mul(2, Pow(Gamma(Div(1, 4)), 2))), Add(1, ConstI)))) [62b0c4 2dcf0c] | 2 (#547) |
1.21401383023291550965660883723 | Neg(Arg(CarlsonRD(0, -1, 1))) [2dcf0c] Neg(Arg(CarlsonRJ(0, -1, 1, 1))) [62b0c4] Neg(Arg(Sub(Mul(Div(Mul(3, Pow(Gamma(Div(1, 4)), 2)), Mul(8, Sqrt(Mul(2, Pi)))), Sub(1, ConstI)), Mul(Div(Mul(Mul(3, Sqrt(2)), Pow(Pi, Div(3, 2))), Mul(2, Pow(Gamma(Div(1, 4)), 2))), Add(1, ConstI))))) [62b0c4 2dcf0c] | 2 (#548) |
1.89783232084312411915829478547 | Neg(Arg(CarlsonRJ(1, 1, 1, -1))) [e04867] Neg(Arg(CarlsonRJ(1, -1, -1, 1))) [4c1db8] Neg(Arg(Sub(Sub(Div(Mul(Mul(3, Sqrt(2)), Log(Add(1, Sqrt(2)))), 4), Div(3, 2)), Div(Mul(Mul(Mul(3, Sqrt(2)), Pi), ConstI), 8)))) [4c1db8 e04867] | 2 (#551) |
Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.
2021-03-15 19:12:00.328586 UTC