Fungrim entry: 63f368

Table of $\left(n\right)^{\underline{k}}$ for $0 \le n \le 10$ and $0 \le k \le 10$
$n$ \ $k$ 012345678910
010000000000
111000000000
212200000000
313660000000
414122424000000
515206012012000000
616301203607207200000
71742210840252050405040000
818563361680672020160403204032000
91972504302415120604801814403628803628800
1011090720504030240151200604800181440036288003628800
Table data: $\left(n, k, y\right)$ such that $\left(n\right)^{\underline{k}} = y$
Definitions:
Fungrim symbol Notation Short description
FallingFactorial$\left(z\right)^{\underline{k}}$ Falling factorial
Source code for this entry:
Entry(ID("63f368"),
Description("Table of", FallingFactorial(n, k), "for", LessEqual(0, n, 10), "and", LessEqual(0, k, 10)),
Table(TableRelation(Tuple(n, k, y), Equal(FallingFactorial(n, k), y)), TableHeadings(Description(n, "\", k), 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), TableColumnHeadings(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), List(Tuple(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Tuple(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), Tuple(1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0), Tuple(1, 3, 6, 6, 0, 0, 0, 0, 0, 0, 0), Tuple(1, 4, 12, 24, 24, 0, 0, 0, 0, 0, 0), Tuple(1, 5, 20, 60, 120, 120, 0, 0, 0, 0, 0), Tuple(1, 6, 30, 120, 360, 720, 720, 0, 0, 0, 0), Tuple(1, 7, 42, 210, 840, 2520, 5040, 5040, 0, 0, 0), Tuple(1, 8, 56, 336, 1680, 6720, 20160, 40320, 40320, 0, 0), Tuple(1, 9, 72, 504, 3024, 15120, 60480, 181440, 362880, 362880, 0), Tuple(1, 10, 90, 720, 5040, 30240, 151200, 604800, 1814400, 3628800, 3628800))))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC