Fungrim entry: 0b4d4b

$\mathcal{Q}^{*}_{D} = \left\{ \left(a, b, c\right) : a \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; b \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; c \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; {b}^{2} - 4 a c = D \;\mathbin{\operatorname{and}}\; \left|b\right| \le a \le c \;\mathbin{\operatorname{and}}\; \left(\left(\left|b\right| = a \;\mathbin{\operatorname{or}}\; a = c\right) \;\implies\; \left(b \ge 0\right)\right) \;\mathbin{\operatorname{and}}\; \gcd\!\left(a, b, c\right) = 1 \right\}$
Assumptions:$D \in \{-3, -4, \ldots\} \;\mathbin{\operatorname{and}}\; -D \bmod 4 \in \left\{0, 3\right\}$
References:
• H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993, Definition 5.3.2
TeX:
\mathcal{Q}^{*}_{D} = \left\{ \left(a, b, c\right) : a \in \mathbb{Z}_{\ge 1} \;\mathbin{\operatorname{and}}\; b \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; c \in \mathbb{Z} \;\mathbin{\operatorname{and}}\; {b}^{2} - 4 a c = D \;\mathbin{\operatorname{and}}\; \left|b\right| \le a \le c \;\mathbin{\operatorname{and}}\; \left(\left(\left|b\right| = a \;\mathbin{\operatorname{or}}\; a = c\right) \;\implies\; \left(b \ge 0\right)\right) \;\mathbin{\operatorname{and}}\; \gcd\!\left(a, b, c\right) = 1 \right\}

D \in \{-3, -4, \ldots\} \;\mathbin{\operatorname{and}}\; -D \bmod 4 \in \left\{0, 3\right\}
Definitions:
Fungrim symbol Notation Short description
PrimitiveReducedPositiveIntegralBinaryQuadraticForms$\mathcal{Q}^{*}_{D}$ Primitive reduced positive integral binary quadratic forms
ZZGreaterEqual$\mathbb{Z}_{\ge n}$ Integers greater than or equal to n
ZZ$\mathbb{Z}$ Integers
Pow${a}^{b}$ Power
Abs$\left|z\right|$ Absolute value
GCD$\gcd\!\left(a, b\right)$ Greatest common divisor
ZZLessEqual$\mathbb{Z}_{\le n}$ Integers less than or equal to n
Source code for this entry:
Entry(ID("0b4d4b"),
Formula(Equal(PrimitiveReducedPositiveIntegralBinaryQuadraticForms(D), Set(Tuple(a, b, c), For(Tuple(a, b, c)), And(Element(a, ZZGreaterEqual(1)), Element(b, ZZ), Element(c, ZZ), Equal(Sub(Pow(b, 2), Mul(Mul(4, a), c)), D), LessEqual(Abs(b), a, c), Parentheses(Implies(Or(Equal(Abs(b), a), Equal(a, c)), GreaterEqual(b, 0))), Equal(GCD(a, b, c), 1))))),
Variables(D),
Assumptions(And(Element(D, ZZLessEqual(-3)), Element(Mod(Neg(D), 4), Set(0, 3)))),
References("H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993, Definition 5.3.2"))

Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC