# Fungrim entry: fb5d88

Table of ${n \choose k}$ for $0 \le n \le 15$ and $0 \le k \le 15$
$n$ \ $k$ 0123456789101112131415
01000000000000000
11100000000000000
21210000000000000
31331000000000000
41464100000000000
5151010510000000000
61615201561000000000
717213535217100000000
8182856705628810000000
9193684126126843691000000
10110451202102522101204510100000
1111155165330462462330165551110000
121126622049579292479249522066121000
131137828671512871716171612877152867813100
14114913641001200230033432300320021001364911410
1511510545513653003500564356435500530031365455105151
Table data: $\left(n, k, y\right)$ such that ${n \choose k} = y$
Definitions:
Fungrim symbol Notation Short description
Binomial${n \choose k}$ Binomial coefficient
Source code for this entry:
Entry(ID("fb5d88"),
Description("Table of", Binomial(n, k), "for", LessEqual(0, n, 15), "and", LessEqual(0, k, 15)),
Table(TableRelation(Tuple(n, k, y), Equal(Binomial(n, k), y)), TableHeadings(Description(n, "\", k), 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15), TableColumnHeadings(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15), List(Tuple(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Tuple(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Tuple(1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Tuple(1, 3, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Tuple(1, 4, 6, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Tuple(1, 5, 10, 10, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Tuple(1, 6, 15, 20, 15, 6, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0), Tuple(1, 7, 21, 35, 35, 21, 7, 1, 0, 0, 0, 0, 0, 0, 0, 0), Tuple(1, 8, 28, 56, 70, 56, 28, 8, 1, 0, 0, 0, 0, 0, 0, 0), Tuple(1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 0, 0, 0, 0, 0), Tuple(1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 0, 0, 0, 0), Tuple(1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1, 0, 0, 0, 0), Tuple(1, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1, 0, 0, 0), Tuple(1, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 1, 0, 0), Tuple(1, 14, 91, 364, 1001, 2002, 3003, 3432, 3003, 2002, 1001, 364, 91, 14, 1, 0), Tuple(1, 15, 105, 455, 1365, 3003, 5005, 6435, 6435, 5005, 3003, 1365, 455, 105, 15, 1))))

## Topics using this entry

Copyright (C) Fredrik Johansson and contributors. Fungrim is provided under the MIT license. The source code is on GitHub.

2021-03-15 19:12:00.328586 UTC