The following table lists all conditions such that BesselIDerivative(nu, z, r) is defined in Fungrim.
Domain | Codomain |
---|
Numbers | ν∈Zandz∈Randr∈Z≥0
| Iν(r)(z)∈R
| ν∈Randz∈(0,∞)andr∈Z≥0
| Iν(r)(z)∈R
| ν∈Zandz∈Candr∈Z≥0
| Iν(r)(z)∈C
| ν∈Candz∈C∖{0}andr∈Z≥0
| Iν(r)(z)∈C
|
|
Table data:
(P,Q)
such that
(P)⟹(Q)
Definitions:
Fungrim symbol | Notation | Short description |
---|
BesselIDerivative | Iν(r)(z)
| Differentiated modified Bessel function of the first kind |
ZZ | Z
| Integers |
RR | R
| Real numbers |
ZZGreaterEqual | Z≥n
| Integers greater than or equal to n |
OpenInterval | (a,b)
| Open interval |
Infinity | ∞
| Positive infinity |
CC | C
| Complex numbers |
Source code for this entry:
Entry(ID("522c1a"),
SymbolDefinition(BesselIDerivative, BesselIDerivative(nu, z, r), "Differentiated modified Bessel function of the first kind"),
Description("The following table lists all conditions such that", SourceForm(BesselIDerivative(nu, z, r)), "is defined in Fungrim."),
Table(TableRelation(Tuple(P, Q), Implies(P, Q)), TableHeadings(Description("Domain"), Description("Codomain")), List(TableSection("Numbers"), Tuple(And(Element(nu, ZZ), Element(z, RR), Element(r, ZZGreaterEqual(0))), Element(BesselIDerivative(nu, z, r), RR)), Tuple(And(Element(nu, RR), Element(z, OpenInterval(0, Infinity)), Element(r, ZZGreaterEqual(0))), Element(BesselIDerivative(nu, z, r), RR)), Tuple(And(Element(nu, ZZ), Element(z, CC), Element(r, ZZGreaterEqual(0))), Element(BesselIDerivative(nu, z, r), CC)), Tuple(And(Element(nu, CC), Element(z, SetMinus(CC, Set(0))), Element(r, ZZGreaterEqual(0))), Element(BesselIDerivative(nu, z, r), CC)))))